Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 28, 2016 16:00–16:25, Dorodnitsyn Computing Centre, Department of Mechanics and Mathematics of Lomonosov Moscow State University., 119991, Moscow, Gubkina str., 8, Steklov Mathematical Institute, 9 floor, Conference hall
 


Contribution to the theory of hyperbolic zeta-functions of the lattices

N. M. Dobrovol'skii

Tula State Pedagogical University
Video records:
Flash Video 1,058.9 Mb
Flash Video 177.7 Mb
MP4 679.1 Mb

Number of views:
This page:406
Video files:112

N. M. Dobrovol'skii



Abstract: The talk is based on the results of common paper of N.M. Dobrovol'skii and N.N. Dobrovol'skii “On new results in the theory of hyperbolic zeta-function of lattices”, supported by grant No. 15-01-01540а of RFBR.

The hyperbolic zeta-function of tattices is defined in the right half-plane $\Re \alpha>1$ by series
$$ \zeta(\Lambda|\alpha)\,=\,\sum\limits_{\vec{x}\in \Lambda,\;\vec{x}\ne \vec{0}}(\overline{x}_{1}\ldots \overline{x}_{s})^{-\alpha}, $$
where $\overline{x}=\max{(1,|x|)}$. Obviously, in the case $s=1$ hyperbolic zeta-function of lattice is expressed in terms of Riemann zeta-function.

In [1], the following asymptotic formula for hyperbolic zeta-function of lattice$\Lambda(t,F)$ was derived:
$$ \zeta_{H}(\Lambda(t,F)|\alpha)\,=\,\frac{2(\det\Lambda(F))^{\alpha}}{R(s-1)!} \biggl(\,\sum\limits_{(w)}|N(w)|^{-\,\alpha}\biggr)\,\frac{\ln^{s-1}{\det\Lambda(t,F)}}{(\det\Lambda(t,F))^{\alpha}}\,+\,O\biggl(\frac{\ln^{s-2}{\det\Lambda(t,F)}}{(\det\Lambda(t,F))^{\alpha}}\biggr). $$
Here $R$ denotes the regulator of the field $F$, and the sum over $(w)$ is the sum over all main ideals of the ring $\mathbf{Z}_{F}$.

Denote by $\zeta_{D_{0}}(\alpha|F)$ Dedekind zeta-function corresponding to main ideals of quadratic field $F$:
$$ \zeta_{D_{0}}(\alpha|F)\,=\,\sum\limits_{(\omega)}|N(\omega)|^{-\alpha}. $$
Then
$$ \zeta_{D_{0}}(\alpha|F)\,=\,\sum\limits_{(\omega)}|N(\omega)|^{-\alpha}\ln{|N(\omega)|}. $$


Theorem. The following asymptotic relation holds:
$$ \zeta_{H}(\Lambda(t,F)|\alpha)\,=\,\frac{2(\det\Lambda)^{\alpha}\zeta_{D_{0}}(\alpha|F)}{R}\cdot \frac{\ln{\det\Lambda(t)}}{(\det\Lambda(t))^{\alpha}}\,-\,\frac{2(\det\Lambda)^{\alpha}}{R(\det\Lambda(t))^{\alpha}}\, \bigl(\ln{\det{\Lambda}}\,+\,\zeta_{D_{0}}'(\alpha|F))\,+\,\frac{2(\det{\Lambda})^{\alpha}\zeta_{D_{0}}(\alpha|F)}{(\det{\Lambda(t)})^{\alpha}}\biggl(\theta_{1}(\alpha)\,+\, \frac{\theta_{2}(\alpha)}{\sinh{(\alpha R/2)}}\biggr), $$
where $|\theta_{1}(\alpha)|\le 1$ and $\varepsilon_{0}^{-\alpha/2}\le \theta_{2}(\alpha)\le \varepsilon_{0}^{\alpha/2}$, $\varepsilon_{0}$ denotes the fundamental unit of quadratic field $F$ and $R$ denotes the regulator of this field.

The proof of this assertion is contained in [2].

In the case of quadratic fields, the analyze of these results shows that the asymptotic formula for hyperbolic zeta-function of algebraic lattice can be improved.

For the case of quadratic fields, further researches should be directed to the study of Dedekind zeta-function of main ideals of quadratic fields and to its derivatives.


[1] N.M. Dobrovol'skii, V.S. Van'kova, S.L. Kozlova, Hyperbolic zeta-function of algebraic lattices. Preprint of VINITI 12.04.90 № 2327-B90.

[2] L.P. Dobrovol'skaya, M.N. Dobrovol'skii, N.M. Dobrovol'skii, N.N. Dobrovol'skii, Hyperbolic zeta-function of lattices of quadratic field. Chebysh. sb., 136:4 (2015), 100-149.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024