Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 29, 2016 15:00–15:25, Dorodnitsyn Computing Centre, Department of Mechanics and Mathematics of Lomonosov Moscow State University., 119991, Moscow, Gubkina str., 8, Steklov Mathematical Institute, 9 floor, Conference hall
 


On a discrete spectrum of Laplace operator on the fundamental domain of modular group and Chebyshev's function

D. A. Popov

Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
Video records:
Flash Video 956.2 Mb
Flash Video 160.5 Mb
MP4 615.5 Mb

Number of views:
This page:297
Video files:80

D. A. Popov



Abstract: Laplace operator $\Delta = u^{2}\bigl(\partial_{x}^{2}\,+\,\partial_{u}^{2}\bigr)$ has infinite discrete spectrum $\{\lambda_{n}\}$,
$$ \Delta\varphi_{n}\,+\,\lambda_{n}\varphi_{n}\,=\,0,\quad \varphi_{n}\in L^{2}(\mathcal{F},d\mu),\quad d\mu\,=\,\frac{dx\,du}{u^{2\mathstrut}},\quad\lambda_{n}\ge 0, $$
in fundamental domain
$$ \mathcal{F}\,=\,\bigl\{z\,=\,x+iy\,|\,y>0, |z|>1, |x|<\tfrac{1}{2}\bigr\} $$
of modular group $PSL(2,\mathbb{Z})$. Also, it has a continuous spectrum mapping the interval$\bigl[\tfrac{1}{4},+\infty\bigr)$.
In his “Shur Lectures” (Tel -Aviv, 1992), P. Sarnack suggested that this discrete spectrum $\{\lambda_{n}\}$ should play a key role in number theory.
In the talk, we will discuss a proof of the following new theorem:

Theorem. Let $x\ge 3$ and suppose that
$$ 0<t\le x^{-4}(\ln{x^{p}})^{-2},\quad p\ge 20. $$
Then the following formula holds:
$$ \psi(x)\,=\,2\sqrt{\pi}t\sum\limits_{n\ge 0}e^{-tr_{n}^{2}}\sum\limits_{2\le k\le x}k\cos{(2r_{n}\ln{k})}\,+\,R(x),\quad |R(x)|\,\le\,\frac{cx^{2}\sqrt{t}}{(\ln{x})^{2\mathstrut}}\,\le\,\frac{c}{(\ln{x})^{3\mathstrut}}. $$
\emph{Here $\psi(x)$ denotes Chebyshev's function, the sequence $r_{n}$ is defined by the relations $\lambda_{n}=r_{n}^{2}+\tfrac{1}{4}$, and $c$ is some computable constant.}

Therefore, the fact that the discrete spectrum $\{\lambda_{n}\}$ determine prime number distribution, is established.

Language: Russian and English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024