Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Steklov Mathematical Institute Seminar
April 18, 2002, Moscow, Steklov Mathematical Institute of RAS, Conference Hall (8 Gubkina)
 


Boundary control of processes described by hyperbolic equations

V. A. Il'in

Number of views:
This page:392

Abstract: The question is studied of the existence of a minimal time interval $T_0$ and a boundary control at one endpoint $x=0$ or boundary controls at the two endpoints $x=0$ and $x=l$ which during the time $T_0$ transform the process described by the equation $k(x)[k(x)u_x(x,t)]_x-u_{tt}(x,t)=0$ (and, in particular, by the wave equation in the case $k(x)=1$), or the process described by the telegraph equation $u_{tt}(x,t)-u_{xx}(x,t)+C^2u(x,t)=0$, from an arbitrarily given initial state $\{u(x,t)=\phi(x),u_t(x,t)=\psi(x)\}$ to an arbitrarily given final state $\{u(x,T)=\phi_1(x)$, $u_t(x,T)=\psi_1(x)\}$.
All the desired boundary controls are produced in explicit analytic form.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024