Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Summer School "Contemporary Mathematics", 2015
July 20, 2015 17:15, Dubna
 


First glances at the principles of Statistical Mechanics: what are Gibbs measures? Lesson 1

M. Simon
Video records:
Flash Video 440.6 Mb
Flash Video 2,639.7 Mb
MP4 1,671.5 Mb
Supplementary materials:
Adobe PDF 206.6 Kb

Number of views:
This page:471
Video files:237
Materials:128

M. Simon



Abstract: The theory of thermodynamics aims at understanding how two types of energy – mechanical and thermal – can be converted into each other. At the end of the XIXth century, the Austrian physicist Ludwig Boltzmann states that the laws of thermodynamics should be derived from Newton's mechanical first principles, on the basis of the atomistic theory of matter. A gas, for instance, can be represented as a collection of atoms – or point particles – moving under Newton's laws.
Mechanical systems are mainly characterized by geometric quantities, such as the positions and the velocities of its mass points. However, this description completely fails for gases, which hold properties that may interfere with their mechanical characteristics, in particular their temperature. The kinetic theory of gases has turned into what we know as statistical mechanics through the work of the American mathematical physicist J. Willard Gibbs, in the early XXth century.
In this context, finding the equilibrium value of macroscopic variables (like temperature) amounts to computing a probability distribution. Such a probability law depends on a finite number of parameters, and describes the possible states of the system composed by a huge amount of particles.
This introductory course will take mathematical looks at the first principles of statistical mechanics, and will aim at:
  • defining the notion of a thermodynamical system of particles;
  • understanding the natural probability measures that characterize such systems, namely the microcanonical ensemble and the Gibbs measures;
  • proving (at least in simpler cases) the Theorem of Equivalence of Ensembles, which justifies the use of the Gibbs measures to compute thermodynamics quantities;
  • asking some mathematical questions (some of them are still unsolved) that naturally arise in this area (like, for instance, the hard problem of proving ergodicity).

Prerequisities are: some notions of calculus (integrals, limits) and, if possible (but not absolutely necessary), some notions of probability.

Supplementary materials: simon_notes.pdf (206.6 Kb)

Language: English

Website: https://www.mccme.ru/dubna/2015/courses/simon.html
Series of lectures
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024