Abstract:
We present new results obtained at the intersection of the theory of Sobolev spaces and geometric function theory. As an application we show a new approach to the definition of allowable deformations in variational problems of the nonlinear theory of elasticity, and a new method of proving the existence of extreme solutions.
S. K. Vodopyanov, “O regulyarnosti otobrazhenii, obratnykh k sobolevskim”, Matem. sb., 203:10 (2012), 3–32
S. K. Vodopyanov, A. D. Ukhlov, “Operatory superpozitsii v prostranstvakh Soboleva”, Izvestiya VUZov. Matematika, 486:10 (2002), 11–33
Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982
S. K. Vodopyanov, “O regulyarnosti funktsii Poletskogo pri slabykh analiticheskikh predpolozheniyakh iskhodnogo otobrazheniya”, Dokl. RAN, 455:2 (2014), 130–134
A. N. Baikin, S. K. Vodopyanov, “Emkostnye otsenki, teoremy tipa Liuvillya i ob ustranenii osobennostei dlya otobrazhenii s ogranichennym $(p,q)$-iskazheniem”, Sib. mat. zhurn., 56:2 (2015), 290–321
J. M. Ball, “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Ration. Mech. and Analys, 63 (1977), 337–403
S. K. Vodopyanov, A. O. Molchanova, “Variatsionnye zadachi nelineinoi teorii uprugosti v nekotorykh klassakh otobrazhenii s konechnym iskazheniem”, Dokl. RAN, 2015 (to appear)