Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 25, 2015 15:45–16:10, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
 


New Besov-type space of variable smoothness and the problem of traces for the weighted Sobolev space

A. I. Tyulenev

Steklov Mathematical Institute of Russian Academy of Sciences
Supplementary materials:
Adobe PDF 64.6 Kb

Number of views:
This page:264
Materials:52

Abstract: For the weighted Sobolev space $W^{l}_{p}(\mathbb{R}^{n},\gamma)$ a complete description of the trace spaces for planes of dimension $1 \le d < n$ is obtained. The weight $\gamma$ depends on all variables and locally satisfies the Muckenhoupt condition. It appears that in the case $1\le r < p <\infty$ the trace space for $W^{l}_{p}(\mathbb{R}^{n},\gamma)$, $\gamma \in A^{loc}_{\frac{p}{r}}(\mathbb{R}^{n})$ is the Besov type space $\widetilde{B}^{l}_{p,p,r}(\mathbb{R}^{d},\{\gamma_{k}\})$ with variable smoothness $\{\gamma_{k}\}$. The norm in $\widetilde{B}^{l}_{p,q,r}(\mathbb{R}^{d},\{\gamma_{k}\})$ is defined with the help of local best approximations in the $L_{r}$-metric.
Various properties of the space $\widetilde{B}^{l}_{p,q,r}(\mathbb{R}^{d},\{\gamma_{k}\})$ are studied by using the method of nonlinear spline approximation for all values of the parameters $0<p,q,r<\infty$, $l \in \mathbb{N}$ under the minimal assumptions on the variable smoothness $\{\gamma_{k}\}$. For example we present the atomic decomposition theorem, embedding theorems and description of the trace space of $\widetilde{B}^{l}_{p,q,r}(\mathbb{R}^{d},\{\gamma_{k}\})$. The space $\widetilde{B}^{l}_{p,q,r}(\mathbb{R}^{d},\{\gamma_{k}\})$ is compared with 2-microlocal Besov space $B^{\{\gamma_{k}\}}_{p,q}(\mathbb{R}^{d})$ intensively studied by many mathematicians.

Supplementary materials: abstract.pdf (64.6 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024