Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 28, 2015 17:05–17:30, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
 


A weighted Hardy-type inequality for $0<p<1$ with sharp constant

A. Senouci

Ibnou Khaldoun University, Algeria
Supplementary materials:
Adobe PDF 105.4 Kb

Number of views:
This page:180
Materials:56

Abstract: Let $\Omega $ be a Lebesgue measurable set in $\mathbb{R}^{n}$, $u $ be a non-negative Lebesgue measurable function on $\Omega$ (weight function), and $ 0 < p < \infty $. We denote by $ {L_{p,u}(\Omega)} $ the space of all Lebesgue measurable functions $ f $ on $\Omega$ for which
$$ \|f\|_{L_{p,u}(B_r)} = \biggl( \int_{\Omega} \vert f(x) \vert^p u(x)\, dx \biggr)^{\frac{1}{p}}<\infty, $$
and by $H$ the $n$-dimensional Hardy operator.
Theorem. Let $C_{1}>0$, $0<p<1$ and $u$, $v$ be weight functions on $\mathbb{R}^{n}$, $(0,\infty)$ respectively. Suppose that
\begin{equation} \int_{B_r}u^{\frac{1}{1-p}}(x)\,dx=\infty \qquad \text{for some} \quad r>0 \label{N345:x1} \end{equation}
and
\begin{equation} V(r):=\int^{\infty}_{r}v(\rho)\rho^{-np}\,d\rho<\infty \qquad \text{for all} \quad r>0. \label{N345:x2} \end{equation}

Consider the set of all Lebesgue measurable functions $f$ on $\mathbb{R}^{n}$ satisfying the inequality
\begin{equation} |f(x)|\leq C_{1}u^{\frac{1}{1-p}}(x)\|f\|_{L_{_{p,u}}(B_{(|x|).})} \label{N345:x3} \end{equation}
for almost all $x\in\mathbb{R}^{n}$. Then for all functions $f$ in this set
\begin{equation}\|Hf\|_{L_{_{p,v}}(0,\infty)} \leq C_{2}\|f\|_{L_{p,w}(\mathbb{R}^{n})} \label{N345:x4} \end{equation}
where
$$ w(x)=u(x) V(|x|),\qquad x\in\mathbb{R}^{n}, $$
and
$$ C_{2}=v_{n}^{-1}pC_{1}^{1-p}. $$

If, in addition,
\begin{equation} \int_{B_{r_{_{2}}}\setminus B_{r_{_{1}}}}u^{\frac{1}{1-p}}(x)\,dx<\infty\qquad \text{for all} \quad 0<r_{_{1}}<r_{_{2}}<\infty, \label{N345:x5} \end{equation}
and
\begin{equation} \int^{1}_{0}\exp\biggl(-C^{p}_{1}\int_{B_{1}\setminus B_{|x|}} u^{\frac{1}{1-p}}(y)\,dy\biggr) v(r)r^{-np}dr<\infty, \label{N345:x6} \end{equation}
then the constant $C_{2}$ is sharp and there exists a functions $f \in L_{p,w}(\mathbb{R}^{n})$ not equivalent to $0$, satisfying inequality \eqref{N345:x3} and such that there is equality in inequality \eqref{N345:x4}.
Joint work with Professor V. I. Burenkov and N. Azzouz.

Supplementary materials: abstract.pdf (105.4 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024