|
|
International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 25, 2015 17:05–17:30, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
|
|
|
|
|
|
Norm convolution inequalities in $L_p$
E. D. Nursultanova, S. Yu. Tikhonovb, N. T. Tleukhanovac a Kazakhstan Branch of Lomonosov Moscow State University
b Centre de Recerca Matemàtica
c L. N. Gumilev Eurasian National University
|
|
Abstract:
Let $1\leq p\leq\infty$, $L_p\equiv L_p(\mathbb {R})$ and
let the convolution operator be given by
$$
(Af)(x)=(K*f)(x)=\int_{{\mathbb R}} K(x-y) f(y) dy, \qquad K\in L_{\text{loc}}.
$$
Let $d>0$ and let
– $M_1$ be the set of all intervals of length $\leq d$;
– $M_2$ be the set of all measurable sets $e\subset[-d,d]$ such that $\operatorname{diam}(e)=\sup_{x,y\in e}|x-y|\leq d$;
– $W_1$ be the set of all finite arithmetic progressions of integer numbers;
– $W_2$ be the set of all finite sets $w\subset{\mathbb Z}$ such that $\min_{i,j\in w}|i-j|\geq 2$.
Now we define the sets $\mathfrak{L}_{d}, \mathfrak{U}_{d}, \mathfrak{V}_{d}$ as follows:
\begin{align*}
\mathfrak{L}_d&=\biggl\{E=\bigcup_{k\in w}(e+kd): e\in M_1, \, w\in W_1\biggr\},
\\
\mathfrak{U}_d&=
\biggl\{E= \bigcup_{k\in w}(e_k+kd): e_k\in M_2, \, w\in W_2, \, |e_k|=|e_j|, \, k,j\in w \biggr\},
\\
\mathfrak{V}_{d}&=
\biggl\{E=\bigcup_{x\in e}(x+w(x)d): e\in M_2, \,w(x)\in W_2, \, |w(x)|=|w(y)|, \, x,y\in e\biggr\},
\end{align*}
where $|e|$ is the measure of a set $e\in M_i$ and $|w|$ is the number of elements of $w \in W_i$.
Note that $\mathfrak{L}_d\subset\mathfrak{U}_d\cap\mathfrak{V}_d$.
If $E\in\mathfrak{L}_d$, then $|E|=|e||w|$, where $e$, $w$ are the sets from the representation of $E$.
Similarly, this property holds for $E\in \mathfrak{U}_d$ and $E\in\mathfrak{V}_d$.
Theorem.
Let $1<p<q<\infty$. If for some $d>0$ we have either
$$
\sup\limits_{E\in \mathfrak{U}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D
$$
or
$$
\sup\limits_{E\in \mathfrak{V}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D,
$$
then the operator $Af=K*f$ is bounded from $L_p(\mathbb R)$ to $L_q(\mathbb R)$ and
$$
\|A\|_{L_p\rightarrow L_q}\leq C(p,q) D,
$$
where $C(p,q)$ depends on $p$ and $q$.
Theorem.
Let $1<p<q<\infty$, $d>0$, and the operator $Af=K*f$ be bounded
from $L_p({\mathbb R})$ to $L_q({\mathbb R})$. If for any $B>0$ we have
$$
\sup_{\substack{E\in \mathfrak{L}_d\\ |E|\leq B}}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(B)<\infty,
$$
then
$$
\sup_{E\in \mathfrak{L}_d}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(p,q)\|A\|_{L_p\rightarrow L_q}.
$$
Corollary.
Let $1<p\leq q<\infty$ and $\lambda = 1-(\frac1p-\frac1q)$. Let also
$$
\mathcal{K}(x)= \frac{e^{i|x|^a}}{|x|^b}\mspace{2mu},
$$
where $a\neq 0,$ $a \neq 1$, and $b\neq \lambda$. If
$$
\max(q, p')>\frac{a}{\lambda-b}>0,
$$
then the operator $Af=\mathcal{K}*f$ is not bounded from $L_p$ to $L_q$.
Supplementary materials:
abstract.pdf (148.8 Kb)
Language: English
References
-
R. O'Neil, “Convolution operators and $L(p, q)$ spaces”, Duke Math. J., 30 (1963), 129–142
-
V. D. Stepanov, Some topics in the theory of integral convolution operators, Dalnauka, Vladivostok, 2000
-
P. Sjölin, “Regularity of solutions to the Schrödinger equation”, Duke Math. J., 55:3 (1987), 699–715
|
|