Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 25, 2015 17:05–17:30, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
 


Norm convolution inequalities in $L_p$

E. D. Nursultanova, S. Yu. Tikhonovb, N. T. Tleukhanovac

a Kazakhstan Branch of Lomonosov Moscow State University
b Centre de Recerca Matemàtica
c L. N. Gumilev Eurasian National University
Supplementary materials:
Adobe PDF 148.8 Kb

Number of views:
This page:264
Materials:73

Abstract: Let $1\leq p\leq\infty$, $L_p\equiv L_p(\mathbb {R})$ and let the convolution operator be given by
$$ (Af)(x)=(K*f)(x)=\int_{{\mathbb R}} K(x-y) f(y) dy, \qquad K\in L_{\text{loc}}. $$

Let $d>0$ and let
$M_1$ be the set of all intervals of length $\leq d$;
$M_2$ be the set of all measurable sets $e\subset[-d,d]$ such that $\operatorname{diam}(e)=\sup_{x,y\in e}|x-y|\leq d$;
$W_1$ be the set of all finite arithmetic progressions of integer numbers;
$W_2$ be the set of all finite sets $w\subset{\mathbb Z}$ such that $\min_{i,j\in w}|i-j|\geq 2$.
Now we define the sets $\mathfrak{L}_{d}, \mathfrak{U}_{d}, \mathfrak{V}_{d}$ as follows:
\begin{align*} \mathfrak{L}_d&=\biggl\{E=\bigcup_{k\in w}(e+kd): e\in M_1, \, w\in W_1\biggr\}, \\ \mathfrak{U}_d&= \biggl\{E= \bigcup_{k\in w}(e_k+kd): e_k\in M_2, \, w\in W_2, \, |e_k|=|e_j|, \, k,j\in w \biggr\}, \\ \mathfrak{V}_{d}&= \biggl\{E=\bigcup_{x\in e}(x+w(x)d): e\in M_2, \,w(x)\in W_2, \, |w(x)|=|w(y)|, \, x,y\in e\biggr\}, \end{align*}
where $|e|$ is the measure of a set $e\in M_i$ and $|w|$ is the number of elements of $w \in W_i$. Note that $\mathfrak{L}_d\subset\mathfrak{U}_d\cap\mathfrak{V}_d$. If $E\in\mathfrak{L}_d$, then $|E|=|e||w|$, where $e$, $w$ are the sets from the representation of $E$. Similarly, this property holds for $E\in \mathfrak{U}_d$ and $E\in\mathfrak{V}_d$.
Theorem. Let $1<p<q<\infty$. If for some $d>0$ we have either
$$ \sup\limits_{E\in \mathfrak{U}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D $$
or
$$ \sup\limits_{E\in \mathfrak{V}_{d}}\frac{1}{|E|^{1/p-1/q}}\int_{E}|K(x)|\,dx\leq D, $$
then the operator $Af=K*f$ is bounded from $L_p(\mathbb R)$ to $L_q(\mathbb R)$ and
$$ \|A\|_{L_p\rightarrow L_q}\leq C(p,q) D, $$
where $C(p,q)$ depends on $p$ and $q$.
Theorem. Let $1<p<q<\infty$, $d>0$, and the operator $Af=K*f$ be bounded from $L_p({\mathbb R})$ to $L_q({\mathbb R})$. If for any $B>0$ we have
$$ \sup_{\substack{E\in \mathfrak{L}_d\\ |E|\leq B}}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(B)<\infty, $$
then
$$ \sup_{E\in \mathfrak{L}_d}\frac{1}{|E|^{1/p-1/q}}\biggl|\int_{E}K(x)\,dx\biggr|\leq C(p,q)\|A\|_{L_p\rightarrow L_q}. $$

Corollary. Let $1<p\leq q<\infty$ and $\lambda = 1-(\frac1p-\frac1q)$. Let also
$$ \mathcal{K}(x)= \frac{e^{i|x|^a}}{|x|^b}\mspace{2mu}, $$
where $a\neq 0,$ $a \neq 1$, and $b\neq \lambda$. If
$$ \max(q, p')>\frac{a}{\lambda-b}>0, $$
then the operator $Af=\mathcal{K}*f$ is not bounded from $L_p$ to $L_q$.

Supplementary materials: abstract.pdf (148.8 Kb)

Language: English

References
  1. R. O'Neil, “Convolution operators and $L(p, q)$ spaces”, Duke Math. J., 30 (1963), 129–142  crossref  mathscinet  zmath
  2. V. D. Stepanov, Some topics in the theory of integral convolution operators, Dalnauka, Vladivostok, 2000
  3. P. Sjölin, “Regularity of solutions to the Schrödinger equation”, Duke Math. J., 55:3 (1987), 699–715  crossref  mathscinet  zmath  isi
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024