Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 25, 2015 14:30–14:55, Функциональные пространства, Moscow, Steklov Mathematical Institute of RAS
 


On sharp constants in fractional Sobolev and Hardy inequalities

A. I. Nazarovab

a Saint Petersburg State University
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Supplementary materials:
Adobe PDF 79.8 Kb

Number of views:
This page:351
Materials:72

Abstract: We discuss the relations between two types of fractional Laplacians – “Dirichlet” and “Navier” ones – in bounded domains in $\mathbb R^n$. Then we prove the coincidence of the Sobolev and Hardy constants relative to these operators of any real order $m\in(0,\frac{n}{2})$.
This talk is based on joint papers with Roberta Musina, see [1], [2], [3].
Author was supported by RFBR grant 14-01-00534 and by St.-Petersburg University grant 6.38.670.2013.

Supplementary materials: abstract.pdf (79.8 Kb)

Language: English

References
  1. R. Musina, A. I. Nazarov, “On fractional Laplacians”, Comm. in PDEs, 39:9 (2014), 1780–1790  crossref  mathscinet  zmath  scopus
  2. R. Musina, A. I. Nazarov, On fractional Laplacians–2, 2014, arXiv: 1408.3568
  3. R. Musina, A. I. Nazarov, “On the Sobolev and Hardy constants for the fractional Navier Laplacian”, Nonlinear Analysis, 121 (2015), 123–129  crossref  mathscinet  isi
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024