Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 14:55–15:20, Дифференциальные уравнения. I, Moscow, Steklov Mathematical Institute of RAS
 


On spherical functions connected with a general PDE of the second order in the unit ball

V. P. Burskiiab

a Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk
b Moscow Institute of Physics and Technology
Supplementary materials:
Adobe PDF 106.9 Kb

Number of views:
This page:150
Materials:43

Abstract: The report is devoted to a connection between the Dirichlet problem in the unit ball for a general PDE of the second order and spherical functions which are zero on null-variety of the PDE-symbol.
Let $L=L(x,D)=\sum_{|\alpha |\le 2}a_\alpha D^\alpha$ be a general linear differential operation with constant coefficients, which can be complex-valued or matrix, and let $\Omega \subset \mathbb R^n$ be a bounded domain with smooth boundary $\partial \Omega $.
Let us consider the Dirichlet problem
\begin{equation} \label{443:eq1} Lu=f,\qquad u|_{\partial \Omega }=0 \end{equation}
in the Sobolev space $W^2_2(\Omega)$. We extend functions $f$ and $u$ by zero: $\widetilde u=u$ in $\Omega$, $\widetilde u=0$ outside of $\Omega$. Then
\begin{equation} \label{443:eq2} L\widetilde u=\widetilde f+L_{1}u\delta_{\partial \Omega }, \end{equation}
where $L_{1}u$ is a linear differential expression on $\psi$ and $u_\nu ^{\prime }\langle \delta _{\partial \Omega },\varphi \rangle =\int_{\partial \Omega }\overline{\varphi }\,ds$. Let the domain $\Omega $ be defined by means of the inequality $P(x)>0$ where $P\in \mathbb R[x]$ is a polinomial, $|\nabla P|_{P=0}\neq 0$. We multiply equality \eqref{443:eq2} by $P(x)$ and apply the Fourier transform. We obtain
\begin{equation} \label{443:eq3} P(-D_\xi )[L(\xi )F(\widetilde u\mspace{1mu})(\xi )]=g(\xi ) \end{equation}
with a known function $g$. Here $L(\xi) $ is the symbol and $L_2(\xi) $ is the major symbol.
Statement. The solvability of the last equation in some classes of entire functions is equivalent to the solvability of problem \eqref{443:eq1}.
If the domain is the unit ball, then $P(-D_\xi)=\Delta_\xi$ and if, moreover, the right-hand side $f=0$, then $g=0$ and for the uniqueness problem in problem \eqref{443:eq1} we obtain the equivalent problem of the following form: $(\Delta_\xi+1)[L_2(\xi)v(\xi)]=0$. Now for lowest term $v_m(\xi)$ of the power series for $v$ we have the equation $\Delta_\xi[L_2(\xi)v_m(\xi)]=0$.
The application of this methods gives, in particular, the following results. Let us consider
$$ Lu=u_{ x_1x_1}+\dots +u_{ x_kx_k}-a^2(u_{ x_{k+1}x_{k+1}}+\dots +u_{ x_nx_n}). $$

\begin{estatement} Problem \eqref{443:eq1} with $f=0$ has a nontrivial solution in $W_2^2({\Omega})$ if and only if there exist natural numbers $m$, $i$, $j$, $i+j\leqslant m$ such that
  • 1) $m-i-j$ even and
    $$ P^{(\frac{n-k}{2}+j-1, i+\frac{k}{2}-1)}_{\frac{m-i-j}{2}+1} \biggl(\frac{a^2-1}{a^2+1}\biggr)=0 $$
    or
  • 2) $m+n-k-i+j$ even and
    $$ P^{(1-j-\frac{n-k}{2}, i+\frac{k}{2}-1)}_{\frac{m+n-k-i+j}{2}} \biggl(\frac{a^2-1}{a^2+1}\biggr)=0 $$
    or
  • 3) $m+n+i+j$ even and
    $$ P^{(1-j-\frac{n-k}{2}, 1-i-\frac{k}{2})}_{\frac{m+n+i+j}{2}-1} \biggl(\frac{a^2-1}{a^2+1}\biggr)=0 $$
    or
  • 4) $m+k+i-j$ even and
    $$ P^{(\frac{n-k}{2}+j-1, 1-i-\frac{k}{2})}_{\frac{m+k+i-j}{2}} \biggl(\frac{a^2-1}{a^2+1}\biggr)=0, $$
where $P^{(\alpha,\beta)}_N (x)$ is the Jacoby polynomial. \end{estatement}
For the case $n=2$ the result conforms with the well-known result for the string equation.
There is also an application of these results to problems of the interal geometry.

Supplementary materials: abstract.pdf (106.9 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024