Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 10:40–11:20, Пленарные доклады, Moscow, Steklov Mathematical Institute of RAS
 


Recent progress in the study of the boundedness of classical operators of real analysis in general Morrey-type spaces

V. I. Burenkovab

a Steklov Mathematical Institute of Russian Academy of Sciences
b Peoples' Friendship University of Russia
Video records:
MP4 1,166.9 Mb
MP4 296.2 Mb
Supplementary materials:
Adobe PDF 147.8 Kb

Number of views:
This page:451
Video files:120
Materials:138

V. I. Burenkov
Photo Gallery



Abstract: Let $0 <p, \theta \le \infty$ and let $w$ be a non-negative measurable function on $(0,\infty)$. We denote by $LM_{p\theta,w}$, $GM_{p\theta,w}$, the local Morrey-type spaces, the global Morrey-type spaces respectively, which are the spaces of all functions $f\in L_p^{loc}(\mathbb{R}^n)$ with finite quasi-norms
$$ \bigl\|w(r)\|f\|_{L_p({B_r})} \bigr\|_{L_\theta(0,\infty)},\qquad \sup_{x\in \mathbb{R}^n }\|f(x+\,\cdot\,)\|_{LM_{p\theta,w}} $$
respectively. (Here ${B_r}$ is the ball of radius $r$ centered at the origin.) For $w(r)=r^{-\frac\lambda p}$ with $0<\lambda<n$ the spaces $GM_{p\theta,w}$ were introduced by C. Morrey in 1938 and appeared to be quite useful in various problems in the theory of partial differential equations.
A survey will be given of recent results in which, for a certain range of the numerical parameters $p_1$, $\theta_1$, $p_2$, $\theta_2$, necessary and sufficient conditions on the functions $w_1$ and $w_2$ are established ensuring the boundedness of the maximal operator, fractional maximal operator, Riesz potential, genuine singular integrals, the Hardy operator as operators from one local Morrey-type space $LM_{p_1\theta_1,w_1}$ to another one $LM_{p_2\theta_2,w_2}$.
Under discussion there will also be interpolation theorems for general local Morrey-type spaces $LM_{p\theta,w}$.

Supplementary materials: abstract.pdf (147.8 Kb)

Language: English

References
  1. V. I. Burenkov, “Recent progress in the problem of the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32  mathnet  mathscinet  zmath
  2. V. I. Burenkov, “Recent progress in the problem of the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45  mathnet  mathscinet  zmath
  3. Proc. Steklov Inst. Math., 284 (2014), 97–128  mathnet  crossref  zmath  isi  scopus
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024