Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Function Spaces and Approximation Theory dedicated to the 110th anniversary of S. M. Nikol'skii
May 27, 2015 14:30–14:55, Приближения функций и гармонический анализ, Moscow, Steklov Mathematical Institute of RAS
 


Approximation by polynomials in Bergman spaces

R. Akgun

Balıkesir University
Supplementary materials:
Adobe PDF 73.5 Kb

Number of views:
This page:204
Materials:62

Abstract: The purpose of this work is to obtain Jackson and converse inequalities of polynomial approximation in Bergman spaces. Some known results, proved for moduli of continuity, are extended to the moduli of smoothness. We proved some simultaneous approximation theorems and obtained the Nikolskii-Stechkin inequality for polynomials in these spaces.

Supplementary materials: abstract.pdf (73.5 Kb)

Language: English

References
  1. M. Sh. Shabozov, O. Sh. Shabozov, “Best approximation and the value of the widths of some classes of functions in the Bergman space $B_{p}$, $1\leq p\leq \infty$”, Dokl. Akad. Nauk, 410:4 (2006), 661–664  mathscinet
  2. E. A. Storozhenko, “On a Hardy–Littlewood problem”, Mat. Sb. (N.S.), 119 (161):4 (1982), 564–583  mathnet  mathscinet
  3. Xing Fu Chong, “A Bernstein-type inequality in Bergman spaces $B_{q}^{p}$, $p>0$, $q>1$”, Acta Math. Sinica (Chin. Ser.), 49:2 (2006), 431–434  mathscinet  zmath
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024