Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 30, 2015 15:00–15:25, Moscow, Steklov Mathematical Institute of the Russian Academy of Sciences
 


On some Diophantine spectra

N. G. Moshchevitin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
Flash Video 138.5 Mb
Flash Video 829.7 Mb
MP4 526.0 Mb

Number of views:
This page:407
Video files:193

N. G. Moshchevitin



Abstract: Let $\alpha$ be an irrational number, and let
$$ \psi_\alpha(t)=\min_{\mathbb{Z}_+\ni q\le t}\|q\alpha\| $$
be the function of measure of its irrationality. In the talk, we discuss some old and new results concerning Lagrange spectrum
$$ \mathbb{L}=\Bigl\{\lambda\in\mathbb{R}:\exists\,\alpha\in\mathbb{R}\setminus\mathbb{Q}\ \liminf_{t\to\infty}t\psi_\alpha(t)=\lambda\Bigr\}, $$
Dirchlet spectrum
$$ \mathbb{D} = \{ d\in \mathbb{R}:\,\, \exists \alpha \in \mathbb{R}\setminus\mathbb{Q}\,\,\, \limsup_{t\to \infty} t\psi_\alpha (t) = d\}, $$
and the spectrum
$$ \mathbb{M}=\Bigl\{m\in\mathbb{R}:\exists\,\alpha\in\mathbb{R}\setminus\mathbb{Q}\ \limsup_{t\to\infty}t\mu_\alpha(t)=m\Bigr\}, $$
connected with the function $\mu_\alpha(t)$, arising in the analysis of Minkowski diagonal fraction.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024