Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on Operator Theory and Function Theory
October 27, 2014 17:30–19:00, St. Petersburg, PDMI, room 311 (nab. r. Fontanki, 27)
 


Poincare-Steklov Integral equation

A. B. Bogatyrev

Number of views:
This page:306

Abstract: Integral equation under consideration connects via the spectral parameter the integral operator with Cauchy kernel and the integral operator with Grunsky kernel. Functional parameter of the equation that defines Grunsky kernel is a variable change on the interval of integration. Equation arises in the dimensional reduction of the following boundary value problem:
A flat domain is divided into two pieces by the interface. We are looking for a continuous function, harmonic in each subdomain and satisfying Dirichlet condition on the outer boundary. At the interface the values ​​of the normal derivatives differ by a factor, the spectral parameter. It will be shown how to explicitly solve the spectral problem for the integral equation in the simplest case when the functional parameter is a degree two rational function.
[1] AB Bogatyrev Geometric method for solving Poincare-Steklov integral equation // Math.Notes 63: 3 (1998) [2] AB Bogatyrev Integral equations PS and the Riemann monodromy problem // Func.An.&Appl. 34: 2 (2000) [3] AB Bogatyrev Integral equations PS-3 and projective structures on Riemann surfaces // Sbornik: Math. 192: 4 (2001) [4] Bogatyrev A.B. Pictorial Representations of antisymmetric Eigenfunctions of PS-3 integral Equations // Math. Physics, Analysis and Geometry (Springer), 13 (2010), 105-143.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024