Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Summer mathematical school "Algebra and Geometry", 2013
July 31, 2013 09:30–11:00
 


Zeta functions coming from geometry III

M. Hindry
Video records:
Flash Video 465.4 Mb
MP4 793.1 Mb

Number of views:
This page:200
Video files:31



Abstract: We plan to give an overview of one of the most beautiful and fruitful tool for local-global problems in arithmetic geometry : zeta functions.
Classical zeta functions : Riemann zeta function, Dirichlet L-functions, prime number theorem and arithmetic progression theorem; Dedekind zeta functions and Artin L-functions, Chebotarev theorem. Zeta functions from algebraic geometry : Weil zeta function (for a variety over a finite field); Hasse-Weil L-functions (for a variety over a number field); L-function associated to a Galois representation or a modular form. Analytic theory of zeta functionsc: Analytic continuation and functional equations; Analytic estimates; Generalized Riemann hypothesis. Special values of zeta functions: Class number formula; Birch and Swinnerton Dyer conjecture; Brauer-Siegel type theorems.
If time permits, we will mention other conjectures on special values : Deligne, Beilinson, etc.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024