Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2005, Volume 41, Issue 2, Pages 50–62 (Mi ppi95)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Representation of $\mathbb Z_4$-Linear Preparata Codes by Means of Vector Fields

N. N. Tokareva

Novosibirsk State University
References:
Abstract: A binary code is called $\mathbb Z_4$-linear if its quaternary Gray map preimage is linear. We show that the set of all quaternary linear Preparata codes of length $n=2^m$, $m$ odd, $m\ge3$, is nothing more than the set of codes of the form $\mathcal H_{\lambda,\psi}+\mathcal M$ with
$$ \mathcal H_{\lambda,\psi}=\{y+T_\lambda(y)+S_\psi(y)\mid y\in H^n\},\qquad \mathcal M=2H^n, $$
where $T_\lambda(\,\cdot\,)$ and $S_\psi(\,\cdot\,)$ are vector fields of a special form defined over the binary extended linear Hamming code $H^n$ of length $n$. An upper bound on the number of nonequivalent quaternary linear Preparata codes of length $n$ is obtained, namely, $2^{n\log_2n}$. A representation for binary Preparata codes contained in perfect Vasil'ev codes is suggested.
Received: 08.12.2004
Revised: 14.03.2005
English version:
Problems of Information Transmission, 2005, Volume 41, Issue 2, Pages 113–124
DOI: https://doi.org/10.1007/s11122-005-0016-4
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: N. N. Tokareva, “Representation of $\mathbb Z_4$-Linear Preparata Codes by Means of Vector Fields”, Probl. Peredachi Inf., 41:2 (2005), 50–62; Problems Inform. Transmission, 41:2 (2005), 113–124
Citation in format AMSBIB
\Bibitem{Tok05}
\by N.~N.~Tokareva
\paper Representation of $\mathbb Z_4$-Linear Preparata Codes by Means of Vector Fields
\jour Probl. Peredachi Inf.
\yr 2005
\vol 41
\issue 2
\pages 50--62
\mathnet{http://mi.mathnet.ru/ppi95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2158684}
\zmath{https://zbmath.org/?q=an:1088.94029}
\transl
\jour Problems Inform. Transmission
\yr 2005
\vol 41
\issue 2
\pages 113--124
\crossref{https://doi.org/10.1007/s11122-005-0016-4}
Linking options:
  • https://www.mathnet.ru/eng/ppi95
  • https://www.mathnet.ru/eng/ppi/v41/i2/p50
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :115
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024