Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2005, Volume 41, Issue 2, Pages 26–41 (Mi ppi93)  

Coding Theory

Weight Functions and Generalized Weights of Linear Codes

D. Yu. Nogin

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: We prove that the weight function $\mathrm{wt}\colon\mathbb F_q^k\to\mathbb Z$ on a set of messages uniquely determines a linear code of dimension $k$ up to equivalence. We propose a natural way to extend the $r$th generalized Hamming weight, that is, a function on $r$-subspaces of a code $C$, to a function on $\mathbb F_q^{\binom kr}\cong\Lambda^rC$. Using this, we show that, for each linear code $C$ and any integer $r\le k=\dim C$, a linear code exists whose weight distribution corresponds to a part of the generalized weight spectrum of $C$, from the $r$th weights to the $k$th. In particular, the minimum distance of this code is proportional to the $r$th generalized weight of $C$.
Received: 02.12.2003
Revised: 16.11.2004
English version:
Problems of Information Transmission, 2005, Volume 41, Issue 2, Pages 91–104
DOI: https://doi.org/10.1007/s11122-005-0014-6
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: D. Yu. Nogin, “Weight Functions and Generalized Weights of Linear Codes”, Probl. Peredachi Inf., 41:2 (2005), 26–41; Problems Inform. Transmission, 41:2 (2005), 91–104
Citation in format AMSBIB
\Bibitem{Nog05}
\by D.~Yu.~Nogin
\paper Weight Functions and Generalized Weights of Linear Codes
\jour Probl. Peredachi Inf.
\yr 2005
\vol 41
\issue 2
\pages 26--41
\mathnet{http://mi.mathnet.ru/ppi93}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2158682}
\zmath{https://zbmath.org/?q=an:1088.94024}
\transl
\jour Problems Inform. Transmission
\yr 2005
\vol 41
\issue 2
\pages 91--104
\crossref{https://doi.org/10.1007/s11122-005-0014-6}
Linking options:
  • https://www.mathnet.ru/eng/ppi93
  • https://www.mathnet.ru/eng/ppi/v41/i2/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :415
    References:64
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024