Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1973, Volume 9, Issue 3, Pages 22–35 (Mi ppi905)  

Methods of Signal Processing

Discrimination of Random Fields against Background Noise

A. G. Ramm
Abstract: Statistical inference theory is applied to the discrimination problem for random fields. The integral equation to which the problem is reduced is subjected to an analytical investigation.
Received: 31.01.1972
Bibliographic databases:
Document Type: Article
UDC: 621.391.162
Language: Russian
Citation: A. G. Ramm, “Discrimination of Random Fields against Background Noise”, Probl. Peredachi Inf., 9:3 (1973), 22–35; Problems Inform. Transmission, 9:3 (1973), 192–202
Citation in format AMSBIB
\Bibitem{Ram73}
\by A.~G.~Ramm
\paper Discrimination of Random Fields against Background Noise
\jour Probl. Peredachi Inf.
\yr 1973
\vol 9
\issue 3
\pages 22--35
\mathnet{http://mi.mathnet.ru/ppi905}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=335121}
\zmath{https://zbmath.org/?q=an:0318.60045}
\transl
\jour Problems Inform. Transmission
\yr 1973
\vol 9
\issue 3
\pages 192--202
Linking options:
  • https://www.mathnet.ru/eng/ppi905
  • https://www.mathnet.ru/eng/ppi/v9/i3/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:292
    Full-text PDF :147
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024