Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1973, Volume 9, Issue 3, Pages 3–11 (Mi ppi903)  

This article is cited in 71 scientific papers (total in 71 papers)

Information Theory

Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel

A. S. Holevo
Abstract: Certain bounds are derived for the quantity of information transmitted by a quantum channel. It is proved that if at least two of the set of density operators $\rho_0,\dots,\rho_n$ do not commute, then $J(\pi)<\mathscr H(\sum_\alpha\pi_\alpha\rho_\alpha)-\sum_\alpha\pi_\alpha\mathscr H(\rho_\alpha)$, where $J(\pi)$ is the upper bound of the quantity of information with respect to all generalized measurements at the channel output for a fixed distribution $\pi=(\pi_0,\dots,\pi_n)$ at the input. A sharper upper bound for $J(\pi)$ is explicitly stated.
Received: 31.08.1971
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:535.14
Language: Russian
Citation: A. S. Holevo, “Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel”, Probl. Peredachi Inf., 9:3 (1973), 3–11; Problems Inform. Transmission, 9:3 (1973), 177–183
Citation in format AMSBIB
\Bibitem{Hol73}
\by A.~S.~Holevo
\paper Bounds for the Quantity of Information Transmitted by a Quantum Communication Channel
\jour Probl. Peredachi Inf.
\yr 1973
\vol 9
\issue 3
\pages 3--11
\mathnet{http://mi.mathnet.ru/ppi903}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=456936}
\zmath{https://zbmath.org/?q=an:0317.94003}
\transl
\jour Problems Inform. Transmission
\yr 1973
\vol 9
\issue 3
\pages 177--183
Linking options:
  • https://www.mathnet.ru/eng/ppi903
  • https://www.mathnet.ru/eng/ppi/v9/i3/p3
  • This publication is cited in the following 71 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:12264
    Full-text PDF :4301
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024