Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1972, Volume 8, Issue 4, Pages 55–67 (Mi ppi867)  

Methods of Signal Processing

Probability of Large Deviations of the Power of a Stationary Gaussian Process

I. Yu. Linnik
Abstract: The asymptotic behavior of the probability function $P_T=P(\int^T_0\xi^2(t)dt>TR(0)x_T)$ is investigated, where $\xi(t)$ is a stationary Gaussian process with expectation $E\xi(t)=0$ and correlation function $R(t)$.
Received: 10.12.1970
Bibliographic databases:
Document Type: Article
UDC: 621.391.1, 519.27
Language: Russian
Citation: I. Yu. Linnik, “Probability of Large Deviations of the Power of a Stationary Gaussian Process”, Probl. Peredachi Inf., 8:4 (1972), 55–67; Problems Inform. Transmission, 8:4 (1972), 313–323
Citation in format AMSBIB
\Bibitem{Lin72}
\by I.~Yu.~Linnik
\paper Probability of Large Deviations of the Power of a Stationary Gaussian Process
\jour Probl. Peredachi Inf.
\yr 1972
\vol 8
\issue 4
\pages 55--67
\mathnet{http://mi.mathnet.ru/ppi867}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=326823}
\zmath{https://zbmath.org/?q=an:0342.60023}
\transl
\jour Problems Inform. Transmission
\yr 1972
\vol 8
\issue 4
\pages 313--323
Linking options:
  • https://www.mathnet.ru/eng/ppi867
  • https://www.mathnet.ru/eng/ppi/v8/i4/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024