Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2005, Volume 41, Issue 1, Pages 3–27 (Mi ppi85)  

This article is cited in 29 scientific papers (total in 29 papers)

Information Theory

Complex Random Matrices and Rician Channel Capacity

T. Ratnarajah, R. Vaillancourt, M. Alvo

University of Ottawa
References:
Abstract: Eigenvalue densities of complex noncentral Wishart matrices are investigated to study an open problem in information theory. Specifically, the largest, smallest, and joint eigenvalue densities of complex noncentral Wishart matrices are derived. These densities are expressed in terms of complex zonal polynomials and invariant polynomials. A connection between the complex Wishart matrix theory and information theory is given. This facilitates evaluation of the most important information-theoretic measure, the so-called ergodic channel capacity. In particular, the capacity of multiple-input multiple-output (MIMO) Rician distributed channels is investigated. We consider both spatially correlated and uncorrelated MIMO Rician channels and derive exact and easily computable tight upper bound formulas for ergodic capacities. Numerical results are also given, which show how the channel correlation degrades the capacity of the communication system.
Received: 25.02.2003
Revised: 10.06.2004
English version:
Problems of Information Transmission, 2005, Volume 41, Issue 1, Pages 1–22
DOI: https://doi.org/10.1007/s11122-005-0006-6
Bibliographic databases:
Document Type: Article
UDC: 621.391.1
Language: Russian
Citation: T. Ratnarajah, R. Vaillancourt, M. Alvo, “Complex Random Matrices and Rician Channel Capacity”, Probl. Peredachi Inf., 41:1 (2005), 3–27; Problems Inform. Transmission, 41:1 (2005), 1–22
Citation in format AMSBIB
\Bibitem{RatVaiAlv05}
\by T.~Ratnarajah, R.~Vaillancourt, M.~Alvo
\paper Complex Random Matrices and Rician
Channel Capacity
\jour Probl. Peredachi Inf.
\yr 2005
\vol 41
\issue 1
\pages 3--27
\mathnet{http://mi.mathnet.ru/ppi85}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2125921}
\zmath{https://zbmath.org/?q=an:1100.94014}
\transl
\jour Problems Inform. Transmission
\yr 2005
\vol 41
\issue 1
\pages 1--22
\crossref{https://doi.org/10.1007/s11122-005-0006-6}
Linking options:
  • https://www.mathnet.ru/eng/ppi85
  • https://www.mathnet.ru/eng/ppi/v41/i1/p3
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:940
    Full-text PDF :416
    References:78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024