Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1986, Volume 22, Issue 1, Pages 49–65 (Mi ppi842)  

This article is cited in 3 scientific papers (total in 4 papers)

Communication Network Theory

Gaussian Diffusion Approximation of Closed Markov Models of Computer Networks

A. Ya. Kogan, R. Sh. Liptser, A. V. Smorodinskii
Abstract: The authors consider a model of a computer network in which (because of the flow control mechanism that is selected) there are always $N$ messages. The model is described by a closed network of queues that form a multivariate birth and death process. Under conditions of heavy traffic, it is shown that as $N\to\infty$, the queue length vector, normed by the number $N$, converges uniformly in probability to the solution of a system of differential equations, while deviations of the queue lengths of order $\sqrt{N}$ from a deterministic limit converge weakly to a Gaussian diffusion process. The martingale methods of proof that are employed yield results under very natural constraints.
Received: 21.11.1983
Bibliographic databases:
Document Type: Article
UDC: 621.394.74:519.2
Language: Russian
Citation: A. Ya. Kogan, R. Sh. Liptser, A. V. Smorodinskii, “Gaussian Diffusion Approximation of Closed Markov Models of Computer Networks”, Probl. Peredachi Inf., 22:1 (1986), 49–65; Problems Inform. Transmission, 22:1 (1986), 38–51
Citation in format AMSBIB
\Bibitem{KogLipSmo86}
\by A.~Ya.~Kogan, R.~Sh.~Liptser, A.~V.~Smorodinskii
\paper Gaussian Diffusion Approximation of Closed Markov Models of Computer Networks
\jour Probl. Peredachi Inf.
\yr 1986
\vol 22
\issue 1
\pages 49--65
\mathnet{http://mi.mathnet.ru/ppi842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=838688}
\zmath{https://zbmath.org/?q=an:0619.60043|0594.60043}
\transl
\jour Problems Inform. Transmission
\yr 1986
\vol 22
\issue 1
\pages 38--51
Linking options:
  • https://www.mathnet.ru/eng/ppi842
  • https://www.mathnet.ru/eng/ppi/v22/i1/p49
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :166
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024