|
Problemy Peredachi Informatsii, 1987, Volume 23, Issue 4, Pages 110–113
(Mi ppi835)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Сorrespondence
Greismer Codes with Maximum Covering Radius
S. M. Dodunekov
Abstract:
Let $C$ be a $(k, d)$ Greismer code with covering radius $\rho(C)$. We prove that if $d>2^k$ or d belongs to Belov intervals of dimension $k+1$, then $\rho(C)\leq d-2$. All Greismer codes $C$ with $\rho(C)\leq d-1$ are described.
Received: 12.08.1985
Citation:
S. M. Dodunekov, “Greismer Codes with Maximum Covering Radius”, Probl. Peredachi Inf., 23:4 (1987), 110–113; Problems Inform. Transmission, 23:4 (1987), 344–346
Linking options:
https://www.mathnet.ru/eng/ppi835 https://www.mathnet.ru/eng/ppi/v23/i4/p110
|
|