Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1987, Volume 23, Issue 2, Pages 35–39 (Mi ppi800)  

Coding Theory

Correction of Multiple Errors by $q$-ary Codes

A. S. Dolgopolov
Abstract: We consider linear $(n, k)$-codes over $GF(q)$ capable of correcting $t$-fold errors in the insertion, erasure, and replacement metric. It is shown that their rate does not exceed 1/2. For $n\geq 2(k+t-1)$, a sufficient existence condition of such codes is derived. A direct construction is applied to verify this condition for $(4m, 2m)$-codes and $t=1$ with $q\geq 7$ and for $(6m, 2m)$-codes and $t=2$ with $q\geq 23$.
Received: 24.07.1984
Revised: 06.01.1987
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: A. S. Dolgopolov, “Correction of Multiple Errors by $q$-ary Codes”, Probl. Peredachi Inf., 23:2 (1987), 35–39; Problems Inform. Transmission, 23:2 (1987), 117–121
Citation in format AMSBIB
\Bibitem{Dol87}
\by A.~S.~Dolgopolov
\paper Correction of Multiple Errors by $q$-ary Codes
\jour Probl. Peredachi Inf.
\yr 1987
\vol 23
\issue 2
\pages 35--39
\mathnet{http://mi.mathnet.ru/ppi800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=908629}
\zmath{https://zbmath.org/?q=an:0635.94014}
\transl
\jour Problems Inform. Transmission
\yr 1987
\vol 23
\issue 2
\pages 117--121
Linking options:
  • https://www.mathnet.ru/eng/ppi800
  • https://www.mathnet.ru/eng/ppi/v23/i2/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024