Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1972, Volume 8, Issue 2, Pages 60–66 (Mi ppi785)  

Queueing theory

Calculation of the Optimum Structural Parameters of Nonblocking Connecting Networks

D. Khamraev
Abstract: A procedure is described for calculating the optimum structural parameters of nonblocking connecting networks on a computer. The author gives the fundamental results of this calculations fir symmetric and asymmetric nonblocking networks containing from 10 to 10,000 inputs and outputs.
Received: 27.09.1971
Document Type: Article
UDC: 621.395.34
Language: Russian
Citation: D. Khamraev, “Calculation of the Optimum Structural Parameters of Nonblocking Connecting Networks”, Probl. Peredachi Inf., 8:2 (1972), 60–66; Problems Inform. Transmission, 8:2 (1972), 129–133
Citation in format AMSBIB
\Bibitem{Kha72}
\by D.~Khamraev
\paper Calculation of the Optimum Structural Parameters of Nonblocking Connecting Networks
\jour Probl. Peredachi Inf.
\yr 1972
\vol 8
\issue 2
\pages 60--66
\mathnet{http://mi.mathnet.ru/ppi785}
\transl
\jour Problems Inform. Transmission
\yr 1972
\vol 8
\issue 2
\pages 129--133
Linking options:
  • https://www.mathnet.ru/eng/ppi785
  • https://www.mathnet.ru/eng/ppi/v8/i2/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :78
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024