|
Problemy Peredachi Informatsii, 1987, Volume 23, Issue 1, Pages 47–56
(Mi ppi753)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Coding Theory
An Improvement of Greismer Bound for Some Classes of Distances
S. M. Dodunekov, N. L. Manev
Abstract:
Linear binary codes are considered. We prove that for $d=2^{k-2}-2^{а}-2^{Ь}$, $0\leq b<a\leq k-3$, $2\leq a$, $9\leq k$, the block length of a $k$-dimensional code with code distance $d$ is not less than
$$
2+\sum_{j=0}^{k-1}\lceil\frac{d}{2^j}\rceil.
$$
Citation:
S. M. Dodunekov, N. L. Manev, “An Improvement of Greismer Bound for Some Classes of Distances”, Probl. Peredachi Inf., 23:1 (1987), 47–56; Problems Inform. Transmission, 23:1 (1987), 38–46
Linking options:
https://www.mathnet.ru/eng/ppi753 https://www.mathnet.ru/eng/ppi/v23/i1/p47
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 104 |
|