Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1987, Volume 23, Issue 1, Pages 28–41 (Mi ppi730)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

An Exhaustion Bound for Algebraic-Geometric “Modular” Codes

S. G. Vlăduţ
Abstract: We construct a new lower bound for asymptotic parameters of codes arising from modular curves. For $q=4,9,16,25$, it is identical to the Varshamov–Gilbert bound, whereas for $q=p^{2a}\geq 49$ it improves the best known lower bound in two ranges of $\delta$.
Received: 14.03.1985
Bibliographic databases:
Document Type: Article
UDC: 621.391.15:519.725
Language: Russian
Citation: S. G. Vlăduţ, “An Exhaustion Bound for Algebraic-Geometric “Modular” Codes”, Probl. Peredachi Inf., 23:1 (1987), 28–41; Problems Inform. Transmission, 23:1 (1987), 22–34
Citation in format AMSBIB
\Bibitem{Vla87}
\by S.~G.~Vl{\u a}du\c t
\paper An Exhaustion Bound for Algebraic-Geometric ``Modular'' Codes
\jour Probl. Peredachi Inf.
\yr 1987
\vol 23
\issue 1
\pages 28--41
\mathnet{http://mi.mathnet.ru/ppi730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=893967}
\zmath{https://zbmath.org/?q=an:0642.94030}
\transl
\jour Problems Inform. Transmission
\yr 1987
\vol 23
\issue 1
\pages 22--34
Linking options:
  • https://www.mathnet.ru/eng/ppi730
  • https://www.mathnet.ru/eng/ppi/v23/i1/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :203
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024