Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2006, Volume 42, Issue 4, Pages 104–120 (Mi ppi65)  

Communication Network Theory

On Flows in Simple Bidirected and Skew-Symmetric Networks

M. A. Babenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider a simple directed network. Results of Karzanov, Even, and Tarjan show that the blocking flow method constructs a maximum integer flow in this network in $O(m\min(m^{1/2},n^{2/3}))$ time (hereinafter, $n$ denotes the number of nodes, and $m$ the number of arcs or edges). For the bidirected case, Gabow proposed a reduction to solve the maximum integer flow problem in $O(m^{3/2})$ time. We show that, with a variant of the blocking flow method, this problem can also be solved in $O(mn^{2/3})$ time. Hence, the gap between the complexities of directed and bidirected cases is eliminated. Our results are described in the equivalent terms of skew-symmetric networks. To obtain the time bound of $O(mn^{2/3})$, we prove that the value of an integer $s$$s'$ flow in a skew-symmetric network without parallel arcs does not exceed $O(Un^2/d^2)$, where $d$ is the length of the shortest regular $s$$s'$ path in the split network and $U$ is the maximum arc capacity. We also show that any acyclic integer flow of value $v$ in a skew-symmetric network without parallel arcs can be positive on at most $O(n\sqrt v)$ arcs.
Received: 01.06.2006
Revised: 08.08.2006
English version:
Problems of Information Transmission, 2006, Volume 42, Issue 4, Pages 356–370
DOI: https://doi.org/10.1134/S0032946006040089
Bibliographic databases:
Document Type: Article
UDC: 621.394.74:519.2
Language: Russian
Citation: M. A. Babenko, “On Flows in Simple Bidirected and Skew-Symmetric Networks”, Probl. Peredachi Inf., 42:4 (2006), 104–120; Problems Inform. Transmission, 42:4 (2006), 356–370
Citation in format AMSBIB
\Bibitem{Bab06}
\by M.~A.~Babenko
\paper On~Flows in Simple Bidirected and Skew-Symmetric Networks
\jour Probl. Peredachi Inf.
\yr 2006
\vol 42
\issue 4
\pages 104--120
\mathnet{http://mi.mathnet.ru/ppi65}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2278815}
\transl
\jour Problems Inform. Transmission
\yr 2006
\vol 42
\issue 4
\pages 356--370
\crossref{https://doi.org/10.1134/S0032946006040089}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846839453}
Linking options:
  • https://www.mathnet.ru/eng/ppi65
  • https://www.mathnet.ru/eng/ppi/v42/i4/p104
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:427
    Full-text PDF :438
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024