Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1990, Volume 26, Issue 1, Pages 46–57 (Mi ppi592)  

Methods of Signal Processing

Minimax Estimation of Linear Functionals in the Presence of Two-Dimensional Noise

V. S. Lebedev
Abstract: Problems of linear minimax estimation of linear functions from observations in a Gaussian random field are considered. The results of [I. A. Ibragimov and R. Z. Khas'minskii, Teor. Veroyatn. Primen., 29, No. 1, 19–32 (1984); 32, No. 1, 35–44 (1987)] are extended to this case. As an example, we examine minimax estimation of the value of the function $f(t,s)$ and its derivatives $\partial^{\alpha}f(t, s)/\partial t^{\alpha_1}\partial s^{\alpha_2}$. It is shown that the problems of estimation of a certain class of unbounded (in $L_2$) linear functions from observations in random fields with correlation operators $I$ and $R$ are equivalent in a certain sense if $R =I+K$, where $I$ is the identity operator and $K$ is a completely continuous operator.
Received: 25.04.1988
Bibliographic databases:
Document Type: Article
UDC: 621.391.1
Language: Russian
Citation: V. S. Lebedev, “Minimax Estimation of Linear Functionals in the Presence of Two-Dimensional Noise”, Probl. Peredachi Inf., 26:1 (1990), 46–57; Problems Inform. Transmission, 26:1 (1990), 38–48
Citation in format AMSBIB
\Bibitem{Leb90}
\by V.~S.~Lebedev
\paper Minimax Estimation of Linear Functionals in the Presence of Two-Dimensional Noise
\jour Probl. Peredachi Inf.
\yr 1990
\vol 26
\issue 1
\pages 46--57
\mathnet{http://mi.mathnet.ru/ppi592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1051587}
\zmath{https://zbmath.org/?q=an:0725.62086}
\transl
\jour Problems Inform. Transmission
\yr 1990
\vol 26
\issue 1
\pages 38--48
Linking options:
  • https://www.mathnet.ru/eng/ppi592
  • https://www.mathnet.ru/eng/ppi/v26/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024