|
Problemy Peredachi Informatsii, 1991, Volume 27, Issue 2, Pages 107–110
(Mi ppi565)
|
|
|
|
Сorrespondence
Fast Evaluation of Multidimensional DFT
M. Ya. Kelbert, A. E. Mazel'
Abstract:
The computation of the multidimensional discrete Fourier transform (DFT) using the discrete Radon transform (DRT) is reducible to the computation of finitely many one-dimensional DFTs. The paper proposes an algorithm for the computation of the DFT of a $d$-dimensional array of $N^d$ points using a minimum number of one-dimensional DFTs $\psi(N)N^{d-1}$. The behaviour of the function $\psi$ is determined by the arithmetic properties of the number $N$, and it is desirable to choose a prime $N$.
Received: 16.04.1990
Citation:
M. Ya. Kelbert, A. E. Mazel', “Fast Evaluation of Multidimensional DFT”, Probl. Peredachi Inf., 27:2 (1991), 107–110; Problems Inform. Transmission, 27:2 (1991), 185–188
Linking options:
https://www.mathnet.ru/eng/ppi565 https://www.mathnet.ru/eng/ppi/v27/i2/p107
|
Statistics & downloads: |
Abstract page: | 365 | Full-text PDF : | 148 |
|