Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2001, Volume 37, Issue 4, Pages 71–84 (Mi ppi536)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

Binary Codes Formed by Functions with Nontrivial Inertia Groups

O. V. Denisov
References:
Abstract: Let $K$ be a permutation group acting on binary vectors of length $n$ and $F_K$ be a code of length $2^n$ consisting of all binary functions with nontrivial inertia group in $K$. We obtain upper and lower bounds on the covering radii of $F_K$, where $K$ are certain subgroups of the affine permutation group $GA_n$. We also obtain estimates for distances between $F_K$ and almost all functions in $n$ variables as $n\to\infty$. We prove the existence of functions with the trivial inertia group in $GA_n$ for all $n\ge 7$. An upper bound for the asymmetry of a $k$-uniform hypergraph is obtained.
Received: 17.01.2001
English version:
Problems of Information Transmission, 2001, Volume 37, Issue 4, Pages 339–352
DOI: https://doi.org/10.1023/A:1013875401571
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: O. V. Denisov, “Binary Codes Formed by Functions with Nontrivial Inertia Groups”, Probl. Peredachi Inf., 37:4 (2001), 71–84; Problems Inform. Transmission, 37:4 (2001), 339–352
Citation in format AMSBIB
\Bibitem{Den01}
\by O.~V.~Denisov
\paper Binary Codes Formed by Functions with Nontrivial Inertia Groups
\jour Probl. Peredachi Inf.
\yr 2001
\vol 37
\issue 4
\pages 71--84
\mathnet{http://mi.mathnet.ru/ppi536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101322}
\zmath{https://zbmath.org/?q=an:1021.94036}
\transl
\jour Problems Inform. Transmission
\yr 2001
\vol 37
\issue 4
\pages 339--352
\crossref{https://doi.org/10.1023/A:1013875401571}
Linking options:
  • https://www.mathnet.ru/eng/ppi536
  • https://www.mathnet.ru/eng/ppi/v37/i4/p71
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :116
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024