Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2001, Volume 37, Issue 3, Pages 24–33 (Mi ppi524)  

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory and Coding Theory

New Minimum Distance Bounds for Linear Codes over Small Fields

R. N. Daskalov, T. A. Gulliver
Full-text PDF (892 kB) Citations (1)
References:
Abstract: Let $[n,k,d]_q$-codes be linear codes of length $n$, dimension $k$, and minimum Hamming distance $d$ over $GF(q)$. In this paper we consider codes over $GF(3)$, $GF(5)$, $GF(7)$, and $GF(8)$. Over $GF(3)$, three new linear codes are constructed. Over $GF(5)$, eight new linear codes are constructed and the nonexistence of six codes is proved. Over $GF(7)$, the existence of 33 new codes is proved. Over $GF(8)$, the existence of ten new codes and the nonexistence of six codes is proved. All of these results improve the corresponding lower and upper bounds in Brouwer's table [1].
Received: 15.02.2001
English version:
Problems of Information Transmission, 2001, Volume 37, Issue 3, Pages 206–215
DOI: https://doi.org/10.1023/A:1013873906597
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: R. N. Daskalov, T. A. Gulliver, “New Minimum Distance Bounds for Linear Codes over Small Fields”, Probl. Peredachi Inf., 37:3 (2001), 24–33; Problems Inform. Transmission, 37:3 (2001), 206–215
Citation in format AMSBIB
\Bibitem{DasGul01}
\by R.~N.~Daskalov, T.~A.~Gulliver
\paper New Minimum Distance Bounds for Linear Codes over Small Fields
\jour Probl. Peredachi Inf.
\yr 2001
\vol 37
\issue 3
\pages 24--33
\mathnet{http://mi.mathnet.ru/ppi524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2098982}
\zmath{https://zbmath.org/?q=an:1021.94019}
\transl
\jour Problems Inform. Transmission
\yr 2001
\vol 37
\issue 3
\pages 206--215
\crossref{https://doi.org/10.1023/A:1013873906597}
Linking options:
  • https://www.mathnet.ru/eng/ppi524
  • https://www.mathnet.ru/eng/ppi/v37/i3/p24
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :112
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024