Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2001, Volume 37, Issue 2, Pages 27–39 (Mi ppi515)  

This article is cited in 2 scientific papers (total in 2 papers)

Large Systems

Nonrobustness Property of the Individual Ergodic Theorem

V. V. V'yugin
References:
Abstract: Main laws of probability theory, when applied to individual sequences, have a “robustness” property under small violations of randomness. For example, the law of large numbers for the symmetric Bernoulli scheme holds for a sequence where the randomness deficiency of its initial fragment of length $n$ grows as $o(n)$. The law of iterated logarithm holds if the randomness deficiency grows as $o(\log\log n)$. We prove that Birkhoff's individual ergodic theorem is nonrobust in this sense. If the randomness deficiency grows arbitrarily slowly on initial fragments of an infinite sequence, this theorem can be violated. An analogous nonrobustness property holds for the Shannon–McMillan–Breiman theorem.
Received: 26.10.2000
English version:
Problems of Information Transmission, 2001, Volume 37, Issue 2, Pages 108–119
DOI: https://doi.org/10.1023/A:1010418008049
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: V. V. V'yugin, “Nonrobustness Property of the Individual Ergodic Theorem”, Probl. Peredachi Inf., 37:2 (2001), 27–39; Problems Inform. Transmission, 37:2 (2001), 108–119
Citation in format AMSBIB
\Bibitem{Vyu01}
\by V.~V.~V'yugin
\paper Nonrobustness Property of the Individual Ergodic Theorem
\jour Probl. Peredachi Inf.
\yr 2001
\vol 37
\issue 2
\pages 27--39
\mathnet{http://mi.mathnet.ru/ppi515}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099896}
\zmath{https://zbmath.org/?q=an:1012.37003}
\transl
\jour Problems Inform. Transmission
\yr 2001
\vol 37
\issue 2
\pages 108--119
\crossref{https://doi.org/10.1023/A:1010418008049}
Linking options:
  • https://www.mathnet.ru/eng/ppi515
  • https://www.mathnet.ru/eng/ppi/v37/i2/p27
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :113
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024