Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2001, Volume 37, Issue 1, Pages 28–51 (Mi ppi507)  

This article is cited in 1 scientific paper (total in 1 paper)

Methods of Signal Processing

Asymptotically Efficient Smoothing in the Wicksell Problem under Squared Losses

G. K. Golubev, F. N. Enikeeva
References:
Abstract: In the Wicksell problem, it is required to reconstruct a distribution function of radii of balls located in an opaque medium from measurements of radii of circles obtained by intersecting the medium with a certain plane. This problem is intimately bound up with estimating a fractional derivative of order 1/2 for a distribution function concentrated on the positive semi-axis. In this paper, the locally asymptotically minimax risk in the Wicksell problem is evaluated up to a constant. Estimators on which this risk is attained are also constructed.
Received: 17.05.2000
Revised: 28.09.2000
English version:
Problems of Information Transmission, 2001, Volume 37, Issue 1, Pages 24–45
DOI: https://doi.org/10.1023/A:1010495609901
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: G. K. Golubev, F. N. Enikeeva, “Asymptotically Efficient Smoothing in the Wicksell Problem under Squared Losses”, Probl. Peredachi Inf., 37:1 (2001), 28–51; Problems Inform. Transmission, 37:1 (2001), 24–45
Citation in format AMSBIB
\Bibitem{GolEni01}
\by G.~K.~Golubev, F.~N.~Enikeeva
\paper Asymptotically Efficient Smoothing in the Wicksell Problem under Squared Losses
\jour Probl. Peredachi Inf.
\yr 2001
\vol 37
\issue 1
\pages 28--51
\mathnet{http://mi.mathnet.ru/ppi507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2099241}
\zmath{https://zbmath.org/?q=an:1006.62034}
\transl
\jour Problems Inform. Transmission
\yr 2001
\vol 37
\issue 1
\pages 24--45
\crossref{https://doi.org/10.1023/A:1010495609901}
Linking options:
  • https://www.mathnet.ru/eng/ppi507
  • https://www.mathnet.ru/eng/ppi/v37/i1/p28
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :144
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024