Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2007, Volume 43, Issue 1, Pages 39–55 (Mi ppi5)  

This article is cited in 6 scientific papers (total in 6 papers)

Coding Theory

On Resolvability of Steiner Systems $S(v=2^m,4,3)$ of Rank $r\le v-m+1$ over $\mathbb F_2$

V. A. Zinov'ev, D. V. Zinov'ev

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: Two new constructions of Steiner quadruple systems $S(v,4,3)$ are given. Both preserve resolvability of the original Steiner system and make it possible to control the rank of the resulting system. It is proved that any Steiner system $S(v=2^m,4,3)$ of rank $r\le v-m+1$ over $\mathbb F_2$ is resolvable and that all systems of this rank can be constructed in this way. Thus, we find the number of all different Steiner systems of rank $r=v-m+1$.
Received: 14.02.2006
Revised: 12.09.2006
English version:
Problems of Information Transmission, 2007, Volume 43, Issue 1, Pages 33–47
DOI: https://doi.org/10.1134/S003294600701005X
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: V. A. Zinov'ev, D. V. Zinov'ev, “On Resolvability of Steiner Systems $S(v=2^m,4,3)$ of Rank $r\le v-m+1$ over $\mathbb F_2$”, Probl. Peredachi Inf., 43:1 (2007), 39–55; Problems Inform. Transmission, 43:1 (2007), 33–47
Citation in format AMSBIB
\Bibitem{ZinZin07}
\by V.~A.~Zinov'ev, D.~V.~Zinov'ev
\paper On Resolvability of Steiner Systems $S(v=2^m,4,3)$
of Rank $r\le v-m+1$ over~$\mathbb F_2$
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 1
\pages 39--55
\mathnet{http://mi.mathnet.ru/ppi5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2304063}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 1
\pages 33--47
\crossref{https://doi.org/10.1134/S003294600701005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255299000005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247622867}
Linking options:
  • https://www.mathnet.ru/eng/ppi5
  • https://www.mathnet.ru/eng/ppi/v43/i1/p39
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :121
    References:74
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024