Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2006, Volume 42, Issue 2, Pages 63–80 (Mi ppi45)  

This article is cited in 11 scientific papers (total in 11 papers)

Coding Theory

Binary Extended Perfect Codes of Length 16 and Rank 14

V. A. Zinov'ev, D. V. Zinov'ev

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: All extended binary perfect $(16,4,2^11)$ codes of rank 14 over the field $\mathbb F_2$ are classified. It is proved that among all nonequivalent extended binary perfect $(16,4,2^11)$ codes there are exactly 1719 nonequivalent codes of rank 14 over $\mathbb F_2$. Among these codes there are 844 codes classified by Phelps (Solov?eva–Phelps codes) and 875 other codes obtained by the construction of Etzion–Vardy and by a new general doubling construction, presented in the paper. Thus, the only open question in the classification of extended binary perfect $(16,4,2^11)$ codes is that on such codes of rank 15 over $\mathbb F_2$.
Received: 11.01.2005
Revised: 02.03.2006
English version:
Problems of Information Transmission, 2006, Volume 42, Issue 2, Pages 123–138
DOI: https://doi.org/10.1134/S0032946006020062
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. A. Zinov'ev, D. V. Zinov'ev, “Binary Extended Perfect Codes of Length 16 and Rank 14”, Probl. Peredachi Inf., 42:2 (2006), 63–80; Problems Inform. Transmission, 42:2 (2006), 123–138
Citation in format AMSBIB
\Bibitem{ZinZin06}
\by V.~A.~Zinov'ev, D.~V.~Zinov'ev
\paper Binary Extended Perfect Codes of Length~16 and Rank~14
\jour Probl. Peredachi Inf.
\yr 2006
\vol 42
\issue 2
\pages 63--80
\mathnet{http://mi.mathnet.ru/ppi45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2232890}
\transl
\jour Problems Inform. Transmission
\yr 2006
\vol 42
\issue 2
\pages 123--138
\crossref{https://doi.org/10.1134/S0032946006020062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33745836711}
Linking options:
  • https://www.mathnet.ru/eng/ppi45
  • https://www.mathnet.ru/eng/ppi/v42/i2/p63
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025