Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1999, Volume 35, Issue 2, Pages 100–106 (Mi ppi447)  

Communication Network Theory

Variance of the Number of Departed Messages in a Simple Queueing System

A. I. Ovseevich
Abstract: We study a simple queueing facility consisting of two servers in tandem, separated by a finite buffer. The servers are independent and their sequences of up/down modes are Bernoullian. The input flow is deterministic (one new message per time unit). We compute explicitly the coefficient $A$ in the asymptotics $\mathbf D(T)\sim AT$ of the covariance of the number of departed messages per interval $[0,T]$.
Received: 09.12.1998
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: A. I. Ovseevich, “Variance of the Number of Departed Messages in a Simple Queueing System”, Probl. Peredachi Inf., 35:2 (1999), 100–106; Problems Inform. Transmission, 35:2 (1999), 180–185
Citation in format AMSBIB
\Bibitem{Ovs99}
\by A.~I.~Ovseevich
\paper Variance of the Number of Departed Messages in a~Simple Queueing System
\jour Probl. Peredachi Inf.
\yr 1999
\vol 35
\issue 2
\pages 100--106
\mathnet{http://mi.mathnet.ru/ppi447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1728912}
\zmath{https://zbmath.org/?q=an:0954.60079}
\transl
\jour Problems Inform. Transmission
\yr 1999
\vol 35
\issue 2
\pages 180--185
Linking options:
  • https://www.mathnet.ru/eng/ppi447
  • https://www.mathnet.ru/eng/ppi/v35/i2/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024