Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1997, Volume 33, Issue 2, Pages 3–25 (Mi ppi365)  

This article is cited in 4 scientific papers (total in 4 papers)

Information Theory and Coding Theory

Sensitivity of the $\varepsilon$-Entropy of Stationary Continuous-Time Gaussian Processes

M. S. Pinsker, V. V. Prelov, S. Verdú
Abstract: Let $N=N(t)$ and $Z=Z(t)$ be independent continuous-time stationary random processes, and let $N$ be Gaussian. Denote by $\overline H_\varepsilon (N+\theta Z)$ the $\varepsilon$-entropy (relative to the mean-square-error criterion) of the process $N+\theta Z$. We prove that for any entropy-regular process $Z$, the limit

$$ S_{\overline H_\varepsilon}(N,Z)=\lim_{\theta\to 0}{1\over\theta^2}[\overline H_\varepsilon (N+\theta Z)-\overline H_\varepsilon (N)], $$

called the sensitivity of the $\varepsilon$-entropy, exists. Moreover, in this case, the equality $S_{\overline H_\varepsilon}(N,Z)=S_{\overline H_\varepsilon}(N,\overline Z)$ holds, where $\overline Z=\overline Z(t)$ is a stationary Gaussian process with the same autocorrelation function as $Z$. An explicit expression for $S_{\overline H_\varepsilon}(N,Z)$ in terms of the spectral densities of $N$ and $Z$ is also derived. Similar results for discrete-time processes have been obtained in [1, 2].
Received: 30.01.1996
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: M. S. Pinsker, V. V. Prelov, S. Verdú, “Sensitivity of the $\varepsilon$-Entropy of Stationary Continuous-Time Gaussian Processes”, Probl. Peredachi Inf., 33:2 (1997), 3–25; Problems Inform. Transmission, 33:2 (1997), 95–113
Citation in format AMSBIB
\Bibitem{PinPreVer97}
\by M.~S.~Pinsker, V.~V.~Prelov, S.~Verd\'u
\paper Sensitivity of the $\varepsilon$-Entropy of Stationary Continuous-Time Gaussian Processes
\jour Probl. Peredachi Inf.
\yr 1997
\vol 33
\issue 2
\pages 3--25
\mathnet{http://mi.mathnet.ru/ppi365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1663920}
\zmath{https://zbmath.org/?q=an:0903.60031}
\transl
\jour Problems Inform. Transmission
\yr 1997
\vol 33
\issue 2
\pages 95--113
Linking options:
  • https://www.mathnet.ru/eng/ppi365
  • https://www.mathnet.ru/eng/ppi/v33/i2/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024