Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1997, Volume 33, Issue 1, Pages 87–93 (Mi ppi362)  

This article is cited in 12 scientific papers (total in 12 papers)

Coding Theory

The Euler Characteristic of the Minimal Code Trellis is Maximum

V. R. Sidorenko
Abstract: A class of separable block codes is defined. The class includes group and linear codes. A code trellis is called the minimal trellis if it has the minimum number of vertices $|V|$| (the order of code symbols is fixed). We show that the minimal trellis of a separable code minimizes the edge count $|E|$ and maximizes the Euler characteristic $|V|-|E|$. Thus, the Viterbi decoding complexity of a separable code is minimum when it is implemented on the minimal code trellis, since the Viterbi decoding algorithm requires $|E|$ additions and $|E|-|V|+1$ comparisons.
Received: 19.04.1996
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. R. Sidorenko, “The Euler Characteristic of the Minimal Code Trellis is Maximum”, Probl. Peredachi Inf., 33:1 (1997), 87–93; Problems Inform. Transmission, 33:1 (1997), 72–77
Citation in format AMSBIB
\Bibitem{Sid97}
\by V.~R.~Sidorenko
\paper The Euler Characteristic of the Minimal Code Trellis is Maximum
\jour Probl. Peredachi Inf.
\yr 1997
\vol 33
\issue 1
\pages 87--93
\mathnet{http://mi.mathnet.ru/ppi362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1441531}
\zmath{https://zbmath.org/?q=an:0901.94030}
\transl
\jour Problems Inform. Transmission
\yr 1997
\vol 33
\issue 1
\pages 72--77
Linking options:
  • https://www.mathnet.ru/eng/ppi362
  • https://www.mathnet.ru/eng/ppi/v33/i1/p87
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :117
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024