Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1996, Volume 32, Issue 4, Pages 46–71 (Mi ppi353)  

This article is cited in 8 scientific papers (total in 8 papers)

Communication Network Theory

Dominance Theorems and Ergodic Properties of Polling Systems

S. G. Foss, N. I. Chernova
Abstract: We consider a class of polling systems with stationary ergodic input flow such that the control in a system obeys a certain regeneration property. For this class, necessary and sufficient conditions for the queue-length process to be bounded in probability are found. Under these conditions, we prove that a stationary regime exists and the queue-length process for a system that starts from the zero initial state converges to this regime. In the proof, we use some monotonicity properties of the models considered and some dominance theorems based on these properties.
Received: 24.02.1995
Revised: 15.04.1996
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:621.394.74:519.2
Language: Russian
Citation: S. G. Foss, N. I. Chernova, “Dominance Theorems and Ergodic Properties of Polling Systems”, Probl. Peredachi Inf., 32:4 (1996), 46–71; Problems Inform. Transmission, 32:4 (1996), 342–364
Citation in format AMSBIB
\Bibitem{FosChe96}
\by S.~G.~Foss, N.~I.~Chernova
\paper Dominance Theorems and Ergodic Properties of Polling Systems
\jour Probl. Peredachi Inf.
\yr 1996
\vol 32
\issue 4
\pages 46--71
\mathnet{http://mi.mathnet.ru/ppi353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1441522}
\zmath{https://zbmath.org/?q=an:1038.60502}
\transl
\jour Problems Inform. Transmission
\yr 1996
\vol 32
\issue 4
\pages 342--364
Linking options:
  • https://www.mathnet.ru/eng/ppi353
  • https://www.mathnet.ru/eng/ppi/v32/i4/p46
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :118
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024