Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2006, Volume 42, Issue 1, Pages 13–33 (Mi ppi34)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Vasil'ev Codes of Length $n=2^m$ and Doubling of Steiner Systems $S(n,4,3)$ of a Given Rank

V. A. Zinov'ev, D. V. Zinov'ev

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: Extended binary perfect nonlinear Vasil'ev codes of length $n=2^m$ and Steiner systems $S(n,4,3)$ of rank $n-m$ over $\mathbb F_2$ are studied. The generalized concatenated construction of Vasil'ev codes induces a variant of the doubling construction for Steiner systems $S(n,4,3)$ of an arbitrary rank $r$ over $\mathbb F_2$. We prove that any Steiner system $S(n=2^m,4,3)$ of rank $n-m$ can be obtained by this doubling construction and is formed by codewords of weight 4 of these Vasil'ev codes. The length 16 is studied in detail. Orders of the full automorphism groups of all 12 nonequivalent Vasil'ev codes of length 16 are found. There are exactly 15 nonisomorphic systems $S(16,4,3)$ of rank 12 over $\mathbb F_2$, and they can be obtained from codewords of weight 4 of the extended Vasil'ev codes. Orders of the automorphism groups of all these Steiner systems are found.
Received: 05.10.2004
Revised: 08.11.2005
English version:
Problems of Information Transmission, 2006, Volume 42, Issue 1, Pages 10–29
DOI: https://doi.org/10.1134/S0032946006010029
Bibliographic databases:
Document Type: Article
UDC: 621.391.15
Language: Russian
Citation: V. A. Zinov'ev, D. V. Zinov'ev, “Vasil'ev Codes of Length $n=2^m$ and Doubling of Steiner Systems $S(n,4,3)$ of a Given Rank”, Probl. Peredachi Inf., 42:1 (2006), 13–33; Problems Inform. Transmission, 42:1 (2006), 10–29
Citation in format AMSBIB
\Bibitem{ZinZin06}
\by V.~A.~Zinov'ev, D.~V.~Zinov'ev
\paper Vasil'ev Codes of Length $n=2^m$ and Doubling of Steiner Systems $S(n,4,3)$ of a Given Rank
\jour Probl. Peredachi Inf.
\yr 2006
\vol 42
\issue 1
\pages 13--33
\mathnet{http://mi.mathnet.ru/ppi34}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2214509}
\zmath{https://zbmath.org/?q=an:1096.94046}
\transl
\jour Problems Inform. Transmission
\yr 2006
\vol 42
\issue 1
\pages 10--29
\crossref{https://doi.org/10.1134/S0032946006010029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646016589}
Linking options:
  • https://www.mathnet.ru/eng/ppi34
  • https://www.mathnet.ru/eng/ppi/v42/i1/p13
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025