Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1996, Volume 32, Issue 1, Pages 20–34 (Mi ppi298)  

This article is cited in 116 scientific papers (total in 117 papers)

Queueing System with Selection of the Shortest of Two Queues: An Asymptotic Approach

N. D. Vvedenskaya, R. L. Dobrushin, F. I. Karpelevich
Abstract: Consider a system that consists of $N$ servers with a Poisson input flow of demands of intensity $N\lambda$. Each demand arriving to the system randomly selects two servers and is instantly sent to the one with the shorter queue. The service time is distributed exponentially with mean 1. It turns out that for $\lambda<1$ it is possible to investigate the asymptotic distribution of the queue lengths as $N\to\infty$. In the limit the queue length probability decreases superexponentially as the queue length increases.
Bibliographic databases:
UDC: 621.391.1:621.394/395.74:519.2
Language: Russian
Citation: N. D. Vvedenskaya, R. L. Dobrushin, F. I. Karpelevich, “Queueing System with Selection of the Shortest of Two Queues: An Asymptotic Approach”, Probl. Peredachi Inf., 32:1 (1996), 20–34; Problems Inform. Transmission, 32:1 (1996), 15–27
Citation in format AMSBIB
\Bibitem{VveDobKar96}
\by N.~D.~Vvedenskaya, R.~L.~Dobrushin, F.~I.~Karpelevich
\paper Queueing System with Selection of the Shortest of Two Queues: An Asymptotic Approach
\jour Probl. Peredachi Inf.
\yr 1996
\vol 32
\issue 1
\pages 20--34
\mathnet{http://mi.mathnet.ru/ppi298}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1384927}
\zmath{https://zbmath.org/?q=an:0898.60095}
\transl
\jour Problems Inform. Transmission
\yr 1996
\vol 32
\issue 1
\pages 15--27
Linking options:
  • https://www.mathnet.ru/eng/ppi298
  • https://www.mathnet.ru/eng/ppi/v32/i1/p20
  • This publication is cited in the following 117 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:4000
    Full-text PDF :1571
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024