Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1995, Volume 31, Issue 4, Pages 3–21 (Mi ppi289)  

This article is cited in 3 scientific papers (total in 3 papers)

Information Theory

Optimal Filtering of a Gaussian Signal Against a Background of Almost Gaussian Noise

M. S. Pinsker, V. V. Prelov
Abstract: An asymptotic expression as $\varepsilon\to 0$ is derived for the mean-square error of the optimal nonlinear filtering of a discrete-time stationary Gaussian process $X=\{X_j\}$ from the observations $Y=\{Y_j\}$ under the assumption that the observed process $Y$ is the sum $Y_j=X_j+N_j+\varepsilon Z_j, j=0,\pm 1,ј$, where the stationary processes $X=\{X_j\}$, $N=\{N_j\}$, and $Z=\{Z_j\}$ are mutually independent and, moreover, $N$ and $X$ are Gaussian processes having spectral densities and $Z$ is an entropy-regular second-order process. It is also shown that the optimal linear filter reconstructing the signal $X$ from the observations $X+N$ (i.e., when the weak additional noise $\varepsilon Z$ is missing ) is asymptotically optimal. If $\varepsilon Z$ is an entropy-singular process, then the mean-square error of the optimal filtering does not depend on $Z$ ($\{Z_j\}$ can be correctly reconstructed from the observations $\{Y_j\}$).
Received: 24.11.1994
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.28
Language: Russian
Citation: M. S. Pinsker, V. V. Prelov, “Optimal Filtering of a Gaussian Signal Against a Background of Almost Gaussian Noise”, Probl. Peredachi Inf., 31:4 (1995), 3–21; Problems Inform. Transmission, 31:4 (1995), 295–311
Citation in format AMSBIB
\Bibitem{PinPre95}
\by M.~S.~Pinsker, V.~V.~Prelov
\paper Optimal Filtering of a~Gaussian Signal Against a~Background of Almost Gaussian Noise
\jour Probl. Peredachi Inf.
\yr 1995
\vol 31
\issue 4
\pages 3--21
\mathnet{http://mi.mathnet.ru/ppi289}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1367923}
\zmath{https://zbmath.org/?q=an:0895.93038|0864.93090}
\transl
\jour Problems Inform. Transmission
\yr 1995
\vol 31
\issue 4
\pages 295--311
Linking options:
  • https://www.mathnet.ru/eng/ppi289
  • https://www.mathnet.ru/eng/ppi/v31/i4/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:405
    Full-text PDF :131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024