|
Problemy Peredachi Informatsii, 2007, Volume 43, Issue 4, Pages 45–50
(Mi ppi26)
|
|
|
|
This article is cited in 14 scientific papers (total in 14 papers)
Coding Theory
Partitions of an $n$-Cube into Nonequivalent Perfect Codes
S. V. Avgustinovichab, F. I. Solov'evaab, O. Hedenc a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Novosibirsk State University
c Royal Institute of Technology
Abstract:
We prove that for all $n=2^k-1$, $k\ge5$, there exists a partition of the set of all
binary vectors of length $n$ into pairwise nonequivalent perfect binary codes of length $n$ with
distance 3.
Received: 09.04.2007 Revised: 13.09.2007
Citation:
S. V. Avgustinovich, F. I. Solov'eva, O. Heden, “Partitions of an $n$-Cube into Nonequivalent Perfect Codes”, Probl. Peredachi Inf., 43:4 (2007), 45–50; Problems Inform. Transmission, 43:4 (2007), 310–315
Linking options:
https://www.mathnet.ru/eng/ppi26 https://www.mathnet.ru/eng/ppi/v43/i4/p45
|
Statistics & downloads: |
Abstract page: | 591 | Full-text PDF : | 149 | References: | 67 | First page: | 15 |
|