Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1994, Volume 30, Issue 4, Pages 3–11 (Mi ppi249)  

This article is cited in 4 scientific papers (total in 4 papers)

Information Theory

Information Rates in Stationary Gaussian Channels in Weak Signal Transmission

M. S. Pinsker, V. V. Prelov
Full-text PDF (807 kB) Citations (4)
Abstract: Let $N=\{N_i\}$ and $Z=\{Z_i\}$ be arbitrary independent discrete-time stationary processes. If $N$ is a regular Gaussian process and $Z$ is a process with completely positive entropy, we prove that the information rate $\bar{I}(Z;N+\theta Z)=\bar{I}(\bar{Z};N+\theta\bar{Z})+o(\theta^2)$, $\theta\to 0$, where $\bar{Z}=\{\bar{Z}_i\}$ is a Gaussian stationary process with the same autocorrelation function as $Z$. As a corollary, some generalizations of the results of [1, 2] concerning the sensitivities of the channel capacity and the $\varepsilon$-entropy are obtained, which allow one to omit the regularity assumption of $Z$ (in the case of the $\varepsilon$-entropy we can also omit the assumption of regularity of $N$ and remove all previous conditions on the spectral densities of $N$ and $Z$).
Received: 19.04.1994
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: M. S. Pinsker, V. V. Prelov, “Information Rates in Stationary Gaussian Channels in Weak Signal Transmission”, Probl. Peredachi Inf., 30:4 (1994), 3–11; Problems Inform. Transmission, 30:4 (1994), 291–298
Citation in format AMSBIB
\Bibitem{PinPre94}
\by M.~S.~Pinsker, V.~V.~Prelov
\paper Information Rates in Stationary Gaussian Channels in Weak Signal Transmission
\jour Probl. Peredachi Inf.
\yr 1994
\vol 30
\issue 4
\pages 3--11
\mathnet{http://mi.mathnet.ru/ppi249}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1310055}
\zmath{https://zbmath.org/?q=an:0913.94006}
\transl
\jour Problems Inform. Transmission
\yr 1994
\vol 30
\issue 4
\pages 291--298
Linking options:
  • https://www.mathnet.ru/eng/ppi249
  • https://www.mathnet.ru/eng/ppi/v30/i4/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :103
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024