Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 1994, Volume 30, Issue 3, Pages 79–95 (Mi ppi246)  

This article is cited in 3 scientific papers (total in 3 papers)

Large Systems

Evolution of a Random String: Stabilization Laws

V. A. Malyshev
Abstract: A discrete-time homogeneous Markov chain is considered the states of which are sequences (strings) $\alpha=x_n\dots x_1$ of $n$ symbols; the transition probabilities depend only on the $d$ leftmost symbols, and $\alpha$ can jump only to $\beta=y_m\dots y_1$ such that $|n-m|\leq d$ and $x_i=y_i$ for all $i=1,\dots, n-d$.
We prove various stabilization laws for the left end of the string. For a queueing theory, this means that a LIFO queue with $r$ types of customers and with batch arrivals and batch services is considered. This constitutes the first step of the new probabilistic approach to communication networks with several customer types.
Received: 02.12.1993
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.2
Language: Russian
Citation: V. A. Malyshev, “Evolution of a Random String: Stabilization Laws”, Probl. Peredachi Inf., 30:3 (1994), 79–95; Problems Inform. Transmission, 30:3 (1994), 260–284
Citation in format AMSBIB
\Bibitem{Mal94}
\by V.~A.~Malyshev
\paper Evolution of a~Random String: Stabilization Laws
\jour Probl. Peredachi Inf.
\yr 1994
\vol 30
\issue 3
\pages 79--95
\mathnet{http://mi.mathnet.ru/ppi246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1299692}
\zmath{https://zbmath.org/?q=an:1042.93524}
\transl
\jour Problems Inform. Transmission
\yr 1994
\vol 30
\issue 3
\pages 260--284
Linking options:
  • https://www.mathnet.ru/eng/ppi246
  • https://www.mathnet.ru/eng/ppi/v30/i3/p79
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025