Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2023, Volume 59, Issue 1, Pages 46–63
DOI: https://doi.org/10.31857/S0555292323010047
(Mi ppi2393)
 

Methods of Signal Processing

Overparameterized maximum likelihood tests for detection of sparse vectors

G. K. Golubev

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We address the problem of detecting a sparse high-dimensional vector against white Gaussian noise. An unknown vector is assumed to have only p nonzero components, whose positions and sizes are unknown, the number p being on one hand large but on the other hand small as compared to the dimension. The maximum likelihood (ML) test in this problem has a simple form and, certainly, depends of $p$. We study statistical properties of overparametrized ML tests, i.e., those constructed based on the assumption that the number of nonzero components of the vector is $q (q>p)$ in a situation where the vector actually has only p nonzero components. We show that in some cases overparametrized tests can be better than standard ML tests.
Keywords: sparse vector, white Gaussian noise, maximum likelihood test.
Received: 16.05.2022
Revised: 06.12.2022
Accepted: 03.01.2023
English version:
Problems of Information Transmission, 2023, Volume 59, Issue 1, Pages 41–56
DOI: https://doi.org/10.1134/S0032946023010040
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.23
Language: Russian
Citation: G. K. Golubev, “Overparameterized maximum likelihood tests for detection of sparse vectors”, Probl. Peredachi Inf., 59:1 (2023), 46–63; Problems Inform. Transmission, 59:1 (2023), 41–56
Citation in format AMSBIB
\Bibitem{Gol23}
\by G.~K.~Golubev
\paper Overparameterized maximum likelihood tests for detection of sparse vectors
\jour Probl. Peredachi Inf.
\yr 2023
\vol 59
\issue 1
\pages 46--63
\mathnet{http://mi.mathnet.ru/ppi2393}
\crossref{https://doi.org/10.31857/S0555292323010047}
\edn{https://elibrary.ru/RMHNYH}
\transl
\jour Problems Inform. Transmission
\yr 2023
\vol 59
\issue 1
\pages 41--56
\crossref{https://doi.org/10.1134/S0032946023010040}
Linking options:
  • https://www.mathnet.ru/eng/ppi2393
  • https://www.mathnet.ru/eng/ppi/v59/i1/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025