Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2023, Volume 59, Issue 1, Pages 3–16
DOI: https://doi.org/10.31857/S0555292323010011
(Mi ppi2388)
 

This article is cited in 2 scientific papers (total in 2 papers)

Coding Theory

Series of formulas for Bhattacharyya parameters in the theory of polar codes

S. G. Kolesnikov, V. M. Leontiev

School of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: Bhattacharyya parameters are used in the theory of polar codes to determine positions of frozen and information bits. These parameters characterize rate of polarization of channels $W_N^{(i)}$, $1\le i\le N$, which are constructed in a special way from the original channel $W$, where $N =2^n$ is the channel length, $n =1,2\dots$. In the case where $W$ is a binary symmetric memoryless channel, we present two series of formulas for the parameters $\smash[b]{Z\bigl(W_N^{(i)}\bigr)}$: for $i=N-2^k+1$, $0\le k\le n$, and for $i=N/2-2^k+1$, $1\le k\le n-2$. The formulas require of the order of $\dbinom{2^{n-k}+2^k-1}{2^k}2^{2^k}$ addition operations for the first series and of the order of $\dbinom{2^{n-k-1}+2^k-1}{2^k}2^{2^k}$ for the second. In the cases $i =1,N/4+1,N/2+1,N$, theobtained expressions for the parameters have been simplified by computing the sums in them. We show potential generalizations for the values of $i$ in the interval $(N/4,N)$. We also study combinatorial properties of the polarizing matrix $G_N$ of a polar code with Arıkan’s kernel. In particular, we establish simple recurrence relations between rows of the matrices $G_N$ and $G_{N/2}$.
Keywords: polar code, Bhattacharyya parameter, polarizing matrix.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2022-876
This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education of the Russian Federation, Agreement no. 075-02-2022-876.
Received: 23.08.2022
Revised: 01.02.2023
Accepted: 08.02.2023
English version:
Problems of Information Transmission, 2023, Volume 59, Issue 1, Pages 1–13
DOI: https://doi.org/10.1134/S0032946023010015
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.725
Language: Russian
Citation: S. G. Kolesnikov, V. M. Leontiev, “Series of formulas for Bhattacharyya parameters in the theory of polar codes”, Probl. Peredachi Inf., 59:1 (2023), 3–16; Problems Inform. Transmission, 59:1 (2023), 1–13
Citation in format AMSBIB
\Bibitem{KolLeo23}
\by S.~G.~Kolesnikov, V.~M.~Leontiev
\paper Series of formulas for Bhattacharyya parameters in the theory of polar codes
\jour Probl. Peredachi Inf.
\yr 2023
\vol 59
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/ppi2388}
\crossref{https://doi.org/10.31857/S0555292323010011}
\edn{https://elibrary.ru/JDDBTP}
\transl
\jour Problems Inform. Transmission
\yr 2023
\vol 59
\issue 1
\pages 1--13
\crossref{https://doi.org/10.1134/S0032946023010015}
Linking options:
  • https://www.mathnet.ru/eng/ppi2388
  • https://www.mathnet.ru/eng/ppi/v59/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025