Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2022, Volume 58, Issue 1, Pages 65–79
DOI: https://doi.org/10.31857/S0555292322010041
(Mi ppi2362)
 

This article is cited in 2 scientific papers (total in 2 papers)

Coding Theory

On $q$-ary propelinear perfect codes based on regular subgroups of the general affine group

I. Yu. Mogilnykh

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
References:
Abstract: A code is said to be propelinear if its automorphism group contains a subgroup acting on its codewords regularly. A subgroup of the group $GA(r,q)$ of affine transformations is said to be regular if it acts regularly on vectors of $\mathbb{F}_q^r$. Every automorphism of a regular subgroup of the general affine group $GA(r,q)$ induces a permutation on the cosets of the Hamming code of length $\frac{q^r-1}{q-1}$ . Based on this permutation, we propose a construction of $q$-ary propelinear perfect codes of length $\frac{q^{r+1}-1}{q-1}$. In particular, for any prime $q$ we obtain an infinite series of almost full rank $q$-ary propelinear perfect codes.
Keywords: propelinear code, perfect code, regular action, affine group, rank.
Funding agency Grant number
Russian Science Foundation 22-21-00135
The research was carried out at the expense of the Russian Science Foundation, project no.  22-21-00135, https://rscf.ru/en/project/22-21-00135/.
Received: 17.12.2021
Revised: 10.02.2022
Accepted: 12.02.2022
English version:
Problems of Information Transmission, 2022, Volume 58, Issue 1, Pages 58–71
DOI: https://doi.org/10.1134/S0032946022010045
Bibliographic databases:
Document Type: Article
UDC: 621.391.1 : 519.725
Language: Russian
Citation: I. Yu. Mogilnykh, “On $q$-ary propelinear perfect codes based on regular subgroups of the general affine group”, Probl. Peredachi Inf., 58:1 (2022), 65–79; Problems Inform. Transmission, 58:1 (2022), 58–71
Citation in format AMSBIB
\Bibitem{Mog22}
\by I.~Yu.~Mogilnykh
\paper On $q$-ary propelinear perfect codes based on regular subgroups of the general affine group
\jour Probl. Peredachi Inf.
\yr 2022
\vol 58
\issue 1
\pages 65--79
\mathnet{http://mi.mathnet.ru/ppi2362}
\crossref{https://doi.org/10.31857/S0555292322010041}
\transl
\jour Problems Inform. Transmission
\yr 2022
\vol 58
\issue 1
\pages 58--71
\crossref{https://doi.org/10.1134/S0032946022010045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000780937000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128235556}
Linking options:
  • https://www.mathnet.ru/eng/ppi2362
  • https://www.mathnet.ru/eng/ppi/v58/i1/p65
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :1
    References:36
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024