Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2022, Volume 58, Issue 1, Pages 16–35
DOI: https://doi.org/10.31857/S0555292322010028
(Mi ppi2360)
 

Coding Theory

Reduction of recursive filters to representations by sparse matrices

A. Yu. Barinov

Military University of Radio Electronics, Cherepovets, Russia
References:
Abstract: A recursive filter as a part of a recursive convolutional code is of practical importance in composite interleaved code circuits. We consider a matrix description of recursive filters in the time domain over the finite field $\mathbb F_2$. We analyze and formalize the reduction of matrices describing recursive filters (with puncturing) to sparse matrices of a special form. We mainly address the analysis of binary sequences of recursive filters with puncturing every second bit. We describe the application of the obtained sparse matrices to finding punctured transfer functions for such filters. We propose an approach to the minimal circuit realization of the punctured transfer functions. We give examples of circuit realizations of punctured turbo codes as duo-binary turbo codes.
Keywords: recursive filter, impulse response, puncturing, sparse matrix, convolutional code, truncated convolutional code, recursive systematic convolutional encoder, minimal encoder, duo-binary turbo code, blind identification of interleaver.
Received: 12.05.2021
Revised: 15.12.2021
Accepted: 03.02.2022
English version:
Problems of Information Transmission, 2022, Volume 58, Issue 1, Pages 13–31
DOI: https://doi.org/10.1134/S0032946022010021
Bibliographic databases:
Document Type: Article
UDC: 621.391 : 519.725.3
Language: Russian
Citation: A. Yu. Barinov, “Reduction of recursive filters to representations by sparse matrices”, Probl. Peredachi Inf., 58:1 (2022), 16–35; Problems Inform. Transmission, 58:1 (2022), 13–31
Citation in format AMSBIB
\Bibitem{Bar22}
\by A.~Yu.~Barinov
\paper Reduction of recursive filters to representations by sparse matrices
\jour Probl. Peredachi Inf.
\yr 2022
\vol 58
\issue 1
\pages 16--35
\mathnet{http://mi.mathnet.ru/ppi2360}
\crossref{https://doi.org/10.31857/S0555292322010028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4429776}
\transl
\jour Problems Inform. Transmission
\yr 2022
\vol 58
\issue 1
\pages 13--31
\crossref{https://doi.org/10.1134/S0032946022010021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000780937000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85128188030}
Linking options:
  • https://www.mathnet.ru/eng/ppi2360
  • https://www.mathnet.ru/eng/ppi/v58/i1/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :1
    References:32
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024